LINEAR ALGEBRA

Lecture 5: Volumes and Distances in Euclidean Spaces

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Euclidean Affine Space

An affine space \mathbb{A} over a Euclidean vector space V is also called Euclidean.

Then we can define

$$\rho(x,y) = \sqrt{(x-y,x-y)}.$$

Suppose $M, N \subset \mathbb{A}$. Then

$$\rho(M,N) = \inf_{m \in M, n \in N} \rho(m,n).$$

Orthogonal Projection and Component

Suppose $U\subset V$, then $(\cdot,\cdot)\mid_{U}>0$ and $V=U\oplus U^{\perp}$, where for any $x\in V$

$$x = \mathrm{pr}_{U} x + \mathrm{ort}_{U} x, \quad \mathrm{pr}_{U} x \in U, \mathrm{ort}_{U} x \in U^{\perp}.$$

Suppose $\{e_1,\dots,e_k\}$ is an orthogonal basis of $U\subset V$. Then

$$\operatorname{pr}_{U} x = \sum_{i=1}^{k} \frac{(x, e_{j})}{(e_{i}, e_{i})} e_{j}, \quad \operatorname{ort}_{U} x = x - \operatorname{pr}_{U} x.$$

Distance Between Points and Subspaces

Let $x \in \mathbb{A}$ be a point and $U \subset V$ be a vector subspace. Then $\rho(x, U) = \|\operatorname{ort}_U x\|$

vector subspace. Then $ho(x,U)=\|\mathrm{ort}_Ux\|.$ **Proof:** Suppose x=y+v, where

$$y
eq \operatorname{pr}_U x \in U$$
, is an arbitrary point (vector) and $v = \operatorname{ort}_U x - u$,

$$u=-\mathrm{pr}_{U}v\in U.$$
 Then

$$\rho(x,y) = \|v\| = \sqrt{\|\text{ort}_U x\|^2 + \|u\|^2} > \|\text{ort}_U x\|.$$

Distance Between Points and Subspaces

Let $x \in \mathbb{A}$ and $U = \langle e_1, \dots, e_k \rangle \subset V$. Then

$$(e_1, \dots, e_k, x)$$
 det $G(e_1, \dots, e_k, x)$

 $(\rho(x,U))^2 = \frac{\det G(e_1,\dots,e_k,x)}{\det G(e_1,\dots,e_k)}.$ **Proof:** $x \in U \Rightarrow \rho(x, U) = 0$ and

$$\det G(e_1,\dots,e_k,x)=0. \text{ Else, } \operatorname{ort}_U x \neq 0$$
 and (orthogonalization for $U\oplus \langle x\rangle$)
$$\|\operatorname{ort}_U x\|^2=(\operatorname{ort}_U x,\operatorname{ort}_U x)=\frac{\delta_{k+1}}{\delta_k}=$$

and (orthogonalization for
$$U \oplus \langle x \rangle$$
)
$$\| \operatorname{ort}_U x \|^2 = (\operatorname{ort}_U x, \operatorname{ort}_U x) = \frac{\delta_{k+1}}{\delta_k} =$$

$$= \frac{\det G(e_1, \dots, e_k, x)}{\det G(e_1, \dots, e_k)}$$

Volumes of Parallelepipeds

An *n*-dimensional parallelepiped on vectors v_1, \dots, v_n in a Euclidean space is

$$P(v_1,\dots,v_n)=\{\sum_{j=1}^n x_jv_j\mid 0\leq x_j\leq 1\}.$$
 Its base is an $(n-1)$ -dim $P(v_1,\dots,v_{n-1})$

and its height is $\|\operatorname{ort}_{\langle v_1,\ldots,v_{n-1}\rangle}v_n\|$.

The volume of $P(v_1, \dots, v_m)$ is

 $Vol P(v_1, ..., v_n) = Vol P(v_1, ..., v_{n-1}) \cdot ||ort_{(v_n, ..., v_n)}||$

and Vol P(v) = ||v||.

Volume Formulas

$$(\text{Vol } P(v_1, \dots, v_n))^2 = \det G(v_1, \dots, v_n).$$

Proof: By induction (n = 1 is trivial):

$$\begin{split} &(\operatorname{Vol} P(v_1, \dots, v_n))^2 = \\ &= (\operatorname{Vol} P(v_1, \dots, v_{n-1}))^2 \cdot \|\operatorname{ort}_{\langle v_1, \dots, v_{n-1} \rangle} v_n\|^2 = \\ &= \det G(v_1, \dots, v_{n-1}) \cdot \frac{\det G(v_1, \dots, v_{n-1}, v_n)}{\det G(v_1, \dots, v_{n-1})} = \\ &= \det G(v_1, \dots, v_n). \end{split}$$

Volume Formulas

Suppose v_1, \dots, v_n are expressed via the orthonormal basis by the matrix A:

$$(v_1,\ldots,v_n)=(e_1,\ldots,e_n)A.$$
 Then $\operatorname{Vol} P(v_1,\ldots,v_n)=|\det A|.$

Proof: This follows from

$$G(v_1, \dots, v_n) = A^T E A = A^T A$$

which implies that

$$\det G(v_1, \dots, v_n) = (\det A)^2.$$