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Euclidean Affine Space

An affine space A over a Euclidean vector
space Vis also called Euclidean.

Then we can define
p(z,y) =+/(z—y,z—y).

Suppose M, N C A. Then

p(M,N)= inf p(m,n).

meM ,ne



Orthogonal Projection and Component

Suppose U C V, then (-,+) |> 0 and
V=U®U"* whereforanyz eV

T = pr,x + ortyx, pryz €U, ortyx € UL,

Suppose {eq, ..., e} Is an orthogonal
basis of U C V. Then

G (a:,ej)

parzg (e e)ej’ ortyx = x — pr .
7j=1




Distance Between Points and Subspaces

Let x € A be apointand U C Vbe a
vector subspace. Then p(z,U) = |ortyz|.

Proof: Suppose = = y + v, where

y # pr,@ € U, is an arbitrary point
(vector) and v = ortyz — w,

u = —pr, v € U. Then

p(z,y) = o] = lortyz|? + [u]? > fortyz|.



Distance Between Points and Subspaces

letz e Aand U = (e, ..., e,) C V. Then

det G(e ...,€ IE)
5 _ 19 » “ko
(p(z,U)) det G(ey, ..., e)

Proof: x € U= p(z,U) =0 and
det G(eq, ..., e, x) = 0. Else, ortyz # 0
and (orthogonalization for U & (z))

)
lortyz|? = (ortyz, ortyz) = % =
K

_det G(ey, ..., e, )
~ det G(ey, ..., ep)




Volumes of Parallelepipeds

An n-dimensional parallelepiped on
vectors vy, ..., v, In a Euclidean space is
P(vy,...,v,) = {22;1 ;| 0<x; <1}
Its base is an (n — 1)-dim P(vq,...,v, 1)
and its height is [lort,, . yv,].

The volume of P(vq,...,v,) IS

Vol P(vy,...,v,) = Vol P(vy,...,v,_;) - |ort

and Vol P(v) = ||v|.



Volume Formulas

(Vol P(vy,...,v,))% = det G(vy,...,v,).

Proof: By induction (n = 1 is trivial):

(Vol P(vy,...,v,))? =
- (VOI P(v]_7 tee ”U’nfl>>2 : ”Ort<v17~~'7vn71>'vn”2 -
det G(/U17"'7vn—1’vn) N

det G(vy, ..., v, 1)

=det G(vy,...,v,_1) -




Volume Formulas

Suppose vy, ..., v,, are expressed via the
orthonormal basis by the matrix A:

(v, ... y0,) = (€q,...,€e,)A. Then

Vol P(vq,...,v,,) = |det A|.

Proof: This follows from
G(vy,...,v,) = ATEA = ATA,
which implies that

det G(vy, ...,v,) = (det A)2.



