LINEAR ALGEBRA

Lecture 4: Orthogonalization of Quadratic Forms

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Orthogonal basis

A basis $\{e_1, \dots, e_n\}$ is orthogonal with respect to α if $\alpha(e_i, e_j) = 0$ for all $i \neq j$.

Vectors u and v are orthogonal $(u \perp v)$ if $\alpha(u,v)=0$.

Constructing of orthogonal basis

Let $\{e_1, \dots, e_n\}$ be a basis in V and A a matrix of α .

Suppose A_k is a matrix of $\alpha \mid_{V_k}$, where $V_k = \langle e_1, \dots, e_k \rangle$. A number $\delta_k = \det A_k$ is a corner minor of A of order k.

Also, let $V_0 = 0$, $\delta_0 = 1$.

Gram-Schmidt Orthogonalization Procedure: Theorem

If all corner minors are non-zero ($\delta_k \neq 0$, $1 \leq k \leq n$), then $\exists !$ a unique orthogonal basis $\{f_1, \dots, f_n\}$ of V such that

$$f_k \in e_k + V_{k-1}, \quad 1 \le k \le n.$$

Also,
$$q(f_k) = \alpha(f_k, f_k) = \frac{\delta_k}{\delta_{k-1}}$$
.

Gram-Schmidt Orthogonalization Procedure: Proof

Induction by $n. n = 1: q(f_1) = \delta_1 = \frac{\delta_1}{\delta_0}.$

n>1: Let $\{f_1,\dots,f_{n-1}\}$ be the basis for V_{n-1} , that satisfies the conditions.

We construct then

$$f_n = e_n + \sum_{j=1}^{n-1} \lambda_j f_j \in e_n + V_{n-1}.$$

Observe that $q(f_k) = \frac{\delta_k}{\delta_{k-1}}, \ k = 1, \dots, n-1.$

Gram-Schmidt Orthogonalization Procedure: Proof

Hence, $\lambda_1, \dots, \lambda_{n-1}$ are determined by the orthogonality condition:

$$0 = \alpha(f_n, f_k) = \alpha(e_n, f_k) + \lambda_k q(f_k).$$

Since $f_n \notin V_{n-1}$, we see that $\{f_1, \dots, f_n\}$ is a basis of V.

Gram-Schmidt Orthogonalization Procedure: Proof

It remains to check that $q(f_n)=\frac{\delta_n}{\delta_{n-1}}$. Consider the transition matrix C: $(f_1,\ldots,f_n)=(e_1,\ldots,e_n)C$. Moreover, $\det C=1$ and

$$\det A' = \det (C^T A C) = \det A.$$

Besides, $A'=\mathrm{diag}(q(f_1),\ldots,q(f_n)).$ It implies $\delta_n=q(f_1)\cdot\ldots\cdot q(f_n)$ and the same for $\delta_{n-1}.$

Normal Form

Let $k = \mathbb{C}$. Then, by scaling basis vectors and after a suitable permutation a form q(x) assumes a normal form $x_1^2 + \ldots + x_r^2$, where $r = \operatorname{rk} q$ is invariant.

Let $\mathbb{k}=\mathbb{R}$. Here we obtain $q(x)=x_1^2+\ldots+x_k^2-x_{k+1}^2-\ldots-x_{k+l}^2,$ where $k+l=\operatorname{rk} q$ is invariant.

Positive and Negative Definite Quadratic Forms

A quadratic form q is positive definite if q(x) > 0 for all $x \neq 0$, and negative definite if q(x) < 0 for all $x \neq 0$.

If
$$q(x) = x_1^2 + \ldots + x_k^2 - x_{k+1}^2 - \ldots - x_{k+l}^2$$
, then

$$k = \max_{q|_{U} > 0} \dim U$$
.

Proof: $q \mid_{\langle e_1, \dots, e_k \rangle} > 0$ and $q \mid_{\langle e_{k+1}, \dots, e_n \rangle} \leq 0$.

The Law of Inertia

Numbers k and l in a normal form $q(x) = x_1^2 + \ldots + x_k^2 - x_{k+1}^2 - \ldots - x_{k+l}^2$ do not depend on a basis (these positive and negative indices of inertia are invariants of q(x)).

Jacobi Method for $\Bbbk = \mathbb{R}$

If all $\delta_k \neq 0$ for a real q(x), then l = the number of changes of sign in $1, \delta_1, \dots, \delta_n$.