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Orthogonal basis

A basis {𝑒1, … , 𝑒𝑛} is orthogonal with
respect to 𝛼 if 𝛼(𝑒𝑖, 𝑒𝑗) = 0 for all 𝑖 ≠ 𝑗.

Vectors 𝑢 and 𝑣 are orthogonal (𝑢 ⟂ 𝑣) if
𝛼(𝑢, 𝑣) = 0.



Constructing of orthogonal basis

Let {𝑒1, … , 𝑒𝑛} be a basis in 𝑉 and 𝐴 a
matrix of 𝛼.

Suppose 𝐴𝑘 is a matrix of 𝛼 ∣𝑉𝑘
, where

𝑉𝑘 = ⟨𝑒1, … , 𝑒𝑘⟩. A number 𝛿𝑘 = det 𝐴𝑘 is
a corner minor of 𝐴 of order 𝑘.

Also, let 𝑉0 = 0, 𝛿0 = 1.



Gram-Schmidt Orthogonalization
Procedure: Theorem

If all corner minors are non-zero (𝛿𝑘 ≠ 0,
1 ≤ 𝑘 ≤ 𝑛), then ∃! a unique orthogonal
basis {𝑓1, … , 𝑓𝑛} of 𝑉 such that

𝑓𝑘 ∈ 𝑒𝑘 + 𝑉𝑘−1, 1 ≤ 𝑘 ≤ 𝑛.

Also, 𝑞(𝑓𝑘) = 𝛼(𝑓𝑘, 𝑓𝑘) = 𝛿𝑘
𝛿𝑘−1

.



Gram-Schmidt Orthogonalization
Procedure: Proof

Induction by 𝑛. 𝑛 = 1 ∶ 𝑞(𝑓1) = 𝛿1 = 𝛿1
𝛿0
.

𝑛 > 1 ∶ Let {𝑓1, … , 𝑓𝑛−1} be the basis for
𝑉𝑛−1, that satisfies the conditions.
We construct then

𝑓𝑛 = 𝑒𝑛 +
𝑛−1
∑
𝑗=1

𝜆𝑗𝑓𝑗 ∈ 𝑒𝑛 + 𝑉𝑛−1.

Observe that 𝑞(𝑓𝑘) = 𝛿𝑘
𝛿𝑘−1

, 𝑘 = 1, … , 𝑛 − 1.



Gram-Schmidt Orthogonalization
Procedure: Proof

Hence, 𝜆1, … , 𝜆𝑛−1 are determined by the
orthogonality condition:

0 = 𝛼(𝑓𝑛, 𝑓𝑘) = 𝛼(𝑒𝑛, 𝑓𝑘) + 𝜆𝑘𝑞(𝑓𝑘).

Since 𝑓𝑛 ∉ 𝑉𝑛−1, we see that {𝑓1, … , 𝑓𝑛}
is a basis of 𝑉.



Gram-Schmidt Orthogonalization
Procedure: Proof

It remains to check that 𝑞(𝑓𝑛) = 𝛿𝑛
𝛿𝑛−1

.
Consider the transition matrix 𝐶:
(𝑓1, … , 𝑓𝑛) = (𝑒1, … , 𝑒𝑛)𝐶. Moreover,
det 𝐶 = 1 and

det 𝐴′ = det (𝐶𝑇𝐴𝐶) = det 𝐴.

Besides, 𝐴′ = diag(𝑞(𝑓1), … , 𝑞(𝑓𝑛)). It
implies 𝛿𝑛 = 𝑞(𝑓1) ⋅ … ⋅ 𝑞(𝑓𝑛) and the
same for 𝛿𝑛−1. �



Normal Form

Let 𝕜 = ℂ. Then, by scaling basis vectors
and after a suitable permutation a form
𝑞(𝑥) assumes a normal form 𝑥2

1 + … + 𝑥2
𝑟 ,

where 𝑟 = rk 𝑞 is invariant.

Let 𝕜 = ℝ. Here we obtain
𝑞(𝑥) = 𝑥2

1 + … + 𝑥2
𝑘 − 𝑥2

𝑘+1 − … − 𝑥2
𝑘+𝑙,

where 𝑘 + 𝑙 = rk 𝑞 is invariant.



Positive and Negative Definite Quadratic
Forms

A quadratic form 𝑞 is positive definite if
𝑞(𝑥) > 0 for all 𝑥 ≠ 0, and negative
definite if 𝑞(𝑥) < 0 for all 𝑥 ≠ 0.

If 𝑞(𝑥) = 𝑥2
1 + … + 𝑥2

𝑘 − 𝑥2
𝑘+1 − … − 𝑥2

𝑘+𝑙,
then

𝑘 = max𝑞∣𝑈>0dim 𝑈.

Proof: 𝑞 ∣⟨𝑒1,…,𝑒𝑘⟩> 0 and 𝑞 ∣⟨𝑒𝑘+1,…,𝑒𝑛⟩≤ 0.



The Law of Inertia

Numbers 𝑘 and 𝑙 in a normal form
𝑞(𝑥) = 𝑥2

1 + … + 𝑥2
𝑘 − 𝑥2

𝑘+1 − … − 𝑥2
𝑘+𝑙 do

not depend on a basis (these positive
and negative indices of inertia are
invariants of 𝑞(𝑥)).

Jacobi Method for 𝕜 = ℝ

If all 𝛿𝑘 ≠ 0 for a real 𝑞(𝑥), then 𝑙 = the
number of changes of sign in 1, 𝛿1, … , 𝛿𝑛.


