Affine Spaces

LA21. Write the equation (in coordinates x_1, x_2) of a line in \mathbb{A}^2 :

- (a) passing through the point (2, -3) and parallel to the vector (5, 2);
- (b) passing through the points (-3, 5) and (4, -1).

LA2 \diamond **2.** Suppose $P \neq Q \in \mathbb{A}^2$. Is it true that

 $f: X \mapsto \operatorname{center}(P, Q, X)$

is an affine map? Is it bijective?

LA2 \diamond **3.** Suppose an affine transformation $f \colon \mathbb{A}^2 \to \mathbb{A}^2$ maps each line to a line parallel to it or to the same line. Prove that *f* is either a parallel translation or a homothety.

LA24. Write the standard coordinate form of an affine transformation in $\mathbb{A}^2(\mathbb{R})$ that maps the point (1, -2) to the point (0, 10), and the lines $10x_1 - 4x_2 = 1$ and $3x_1 - 3x_2 = -7$ to the lines $x_1 - 2x_2 = -3$ and $x_1 - x_2 = 6$, respectively.

LA2 \diamond **5.** Suppose ℓ_1 and ℓ_2 are skew lines in the space \mathbb{E}^3 . Is it true that lines *PQ*, where $P \in \ell_1, Q \in \ell_2$, sweep the whole space?

LA2 \diamond 6. How many lines are there in $\mathbb{A}^2(\mathbb{F}_q)$ over the finite field \mathbb{F}_q of *q* elements?

LA2 \diamond 7. Describe an affine transformation $f \circ H_O^{\lambda} \circ f^{-1}$, where H_O^{λ} denotes a homothety with the center $O \in \mathbb{A}^2$ and the coefficient $\lambda \in \mathbb{R}$, and $f \colon \mathbb{A}^2 \to \mathbb{A}^2$ is some arbitrary affine transformation.

LA2 \diamond **8.** What is the composition $H_p^{\lambda} \circ H_Q^{\mu} \colon \mathbb{A}^2 \to \mathbb{A}^2$ of two homotheries with different centers and coefficients?

LA2 \diamond **9.** Let *V* be an affine space of dimension *n* over the finite field \mathbb{F}_q of *q* elements. How many *k*-dimensional affine subspaces are there in *V*?