Affine Spaces

LA2 $\diamond \mathbf{1}$. Write the equation (in coordinates x_{1}, x_{2}) of a line in \mathbb{A}^{2} :
(a) passing through the point $(2,-3)$ and parallel to the vector $(5,2)$;
(b) passing through the points $(-3,5)$ and $(4,-1)$.

LA2 \diamond 2. Suppose $P \neq Q \in \mathbb{A}^{2}$. Is it true that

$$
f: X \mapsto \operatorname{center}(P, Q, X)
$$

is an affine map? Is it bijective?
LA2 \diamond. Suppose an affine transformation $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ maps each line to a line parallel to it or to the same line. Prove that f is either a parallel translation or a homothety.

LA2 $\diamond 4$. Write the standard coordinate form of an affine transformation in $\mathbb{A}^{2}(\mathbb{R})$ that maps the point $(1,-2)$ to the point $(0,10)$, and the lines $10 x_{1}-4 x_{2}=1$ and $3 x_{1}-3 x_{2}=-7$ to the lines $x_{1}-2 x_{2}=-3$ and $x_{1}-x_{2}=6$, respectively.

LA2 $\diamond 5$. Suppose ℓ_{1} and ℓ_{2} are skew lines in the space \mathbb{E}^{3}. Is it true that lines $P Q$, where $P \in \ell_{1}, Q \in \ell_{2}$, sweep the whole space?

LA2 \diamond 6. How many lines are there in $\mathbb{A}^{2}\left(\mathbb{F}_{q}\right)$ over the finite field \mathbb{F}_{q} of q elements?
LA2 \diamond 7. Describe an affine transformation $f \circ H_{O}^{\lambda} \circ f^{-1}$, where H_{O}^{λ} denotes a homothety with the center $O \in \mathbb{A}^{2}$ and the coefficient $\lambda \in \mathbb{R}$, and $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ is some arbitrary affine transformation.

LA2 \diamond. What is the composition $H_{P}^{\lambda} \circ H_{Q}^{\mu}: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$ of two homotheries with different centers and coefficients?

LA2 $\diamond 9$. Let V be an affine space of dimension n over the finite field \mathbb{F}_{q} of q elements. How many k-dimensional affine subspaces are there in V ?

