
Linear Algebra
Lecture 6: Convex Polyhedra I

Nikolay V. Bogachev

Moscow Institute of Physics and Technology
Department of Discrete Mathematics
Laboratory of Advanced Combinatorics and Network Applications



The Separation Theorem

For every point 𝑋 ∈ 𝜕𝑀 for a closed convex 

body 𝑀 ⊂ 𝔼𝑛 there exists a supporting 

hyperplane 𝐻 ∋ 𝑋.
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The Separation Theorem

We proved that any plane 𝑃 trough 𝑋 ∈ 𝜕𝑀,

s.t. 𝑃 ∩ int 𝑀 = ∅, is contained in a 

supporting hyperplane.

𝑋 ∈ 𝜕𝑀 can belong to either a unique

𝑋𝑋

or 

infinitely many supporting hyperplanes. 



Intersection of Half-Spaces

Every closed convex set is an intersection of 

(perhaps infinitely many) half-spaces.

Proof: 𝐻𝑓 = 𝐻𝑓
+ ∩ 𝐻𝑓

−, it implies that any 

plane is an intersection of half-spaces.

Thus, it remains to prove the theorem for a 

convex body. 

Every convex body is the intersection of  

half-spaces of its supporting hyperplanes. 



Polyhedron

A convex polyhedron is an intersection of 

finitely many half-spaces (sometimes, non-

empty interior is required).
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Extreme Points

A point 𝐴 ∈ 𝑀 for a convex 𝑀 is extreme if it 

is not an interior point of any interval in 𝑀.

Proof: Let ෪𝑀 = conv 𝐸 𝑀 . Clearly, ෪𝑀 ⊂ 𝑀.

Theorem. A bounded closed convex set 𝑀 is 

the convex hull of the set 𝐸(𝑀) of its extreme 

points.

We will prove by induction on 𝑛 = dim 𝔼𝑛

that 𝑀 ⊂ ෪𝑀 . Assume that 𝑛 > 0, 𝐴 ∈ 𝑀, and 

𝑀 is a convex body. 



Extreme Points

Proof:  Assume that 𝑛 > 0, 𝐴 ∈ 𝑀, and 𝑀 is a 

convex body. We’ll prove that 𝐴 ∈ ෪𝑀.

Case 1: 𝐴 ∈ 𝜕𝑀. Taking a supporting 

hyperplane 𝐻 ∋ 𝐴, we obtain that a bounded 

closed convex set 𝐻 ∩ 𝑀 = conv 𝐸(𝐻 ∩ 𝑀)

and 𝐴 ∈ ෪𝑀 .

Case 2: 𝐴 ∈ int 𝑀. Then 𝐴 ∈ (𝑋, 𝑌), where 

𝑋, 𝑌 ∈ 𝜕𝑀, and therefore, 𝑋, 𝑌 ∈ ෪𝑀 .

Thus, 𝐴 ∈ ෪𝑀 .



Minkowski-Weyl Theorem

𝑀 is a convex polyhedron iff 𝑀 is a convex 

hull of finitely many points.

Proof: Let 𝑀 = 𝑗=1ځ
𝑚 𝐻𝑓𝑗

+ be a convex 

polyhedron. Let us prove that ∀𝑋 ∈ 𝐸 𝑀 is 

the only point in the intersection of some of 

𝐻𝑓1

+, … , 𝐻𝑓𝑚

+ .

This will imply that 

# 𝐸 𝑀 < +∞, and 𝑀 = conv 𝐸 𝑀 .



Minkowski-Weyl Theorem

Proof: Let A ∈ 𝐸(𝑀). Define 

𝐽 = 𝑗 𝑓𝑗 𝐴 = 0 ⊂ 1, … , 𝑚 ,

𝑃 = 𝑋 ∈ 𝔼𝑛 𝑓𝑗 𝑋 = 0, 𝑗 ∈ 𝐽 .

Since 𝑓𝑘(𝐴) > 0 for 𝑘 ∉ 𝐽,  we see that 

𝐴 ∈ int(𝑀 ∩ 𝑃) in the space 𝑃.

But 𝐴 ∈ 𝐸(𝑀), hence 𝐴 ∈ 𝐸(𝑀 ∩ 𝑃). Thus, 

dim 𝑃 = 0 , that is, 𝑃 = {𝐴}.



Minkowski-Weyl Theorem
Proof: Let 𝑀 = conv{𝐴1, … , 𝐴𝑘}. We assume 

that aff 𝑀 = 𝔼𝑛. Consider

Any 𝑓 is uniquely determined by 𝑓(𝐴𝑗) for 

𝑗 = 1, … , 𝑘. Since 𝑓 𝐴𝑗 ≤ 1, then 𝑀∗ is 

bounded and 𝑀∗ = conv{𝑓1, … , 𝑓𝑚}. Thus, 

𝑀 = 𝑋 ∈ 𝔼𝑛 𝑓 𝑋 ≥ 0 ∀𝑓 ∈ 𝑀∗ =

= 𝑋 ∈ 𝔼𝑛 𝑓𝑘 𝑋 ≥ 0 ∀𝑘 = 1, … , 𝑚 .

𝑀∗ = {𝑓 ∣ 𝑓 𝐴𝑗 ≥ 0 for 1 ≤ 𝑗 ≤ 𝑘, ෍

𝑗=1

𝑘

𝑓 𝐴𝑗 = 1}




