# LINEAR ALGEBRA <br> Lecture 1: Vector Spaces 

## Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

## Vector Spaces

A set $V$ with operations of addition $+: V \times V \rightarrow V$ and scalar multiplication $\cdot: \mathbb{k} \times V \rightarrow V$ is a vector space over $\mathfrak{k}$, if for all $v, v_{1}, v_{2}, v_{3} \in V$ and $\lambda, \mu \in \mathbb{k}$

- $(V,+)$ is Abelian group and
- $(\lambda \mu) v=\lambda(\mu v)$
- $(\lambda+\mu) v=\lambda v+\mu v$
- $\lambda\left(v_{1}+v_{2}\right)=\lambda v_{1}+\lambda v_{2}$
$\cdot 1 \cdot v=v$.


## Exercises/Examples

- $0 \cdot v=0$ and $(-1) v=-v$ for any $v \in V$
- $V=0, V=\mathbb{k}$ are vector spaces
- $V=\mathbb{k}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{j} \in \mathbb{k}\right\}$ is a vector space, where

$$
\begin{aligned}
& \lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right) \\
& \text { and }\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)= \\
& =\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)
\end{aligned}
$$

- $\operatorname{Mat}_{n}(\mathbb{k})$ is a vector space.


## Linear Independence

- a linear combination of $\left\{v_{j}\right\}_{j \in J}$ : $\sum_{j \in J} \lambda_{j} v_{j}$ (called trivial if all $\lambda_{j}=0$ )
- a system $\left\{v_{j}\right\}_{j \in J}$ is called linearly dependent if there exists a non-trivial linear combination $\sum_{j \in J} \lambda_{j} v_{j}=0$
- Otherwise, it is linearly independent.


## Basis and Dimension

- A basis of $V$ is maximal linearly independent system
- $V$ is finite dimensional if there exists a finite basis
- If $V$ is finite dimensional then all bases consist of the same number of elements
- This number $\operatorname{dim} V$ is called the dimension of $V$


## Basis and Dimension

- A linear span of a subset $S \subset V$ is a set $\langle S\rangle$ of all finite linear combinations of elements from $S$
- If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of $V$, then $V=\left\langle e_{1}, \ldots, e_{n}\right\rangle$
- If $V=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ and $\operatorname{dim} V=n$, then any vector $v$ has a unique representation $v=v_{1} e_{1}+\ldots+v_{n} e_{n}$


## Coordinates of vectors

- If $V=\left\langle e_{1}, \ldots, e_{n}\right\rangle$, $\operatorname{dim} V=n$, and $v=v_{1} e_{1}+\ldots+v_{n} e_{n}$, then numbers $v_{1}, \ldots, v_{n}$ are called coordinates of a vector $v$ in the basis $\left\{e_{1}, \ldots, e_{n}\right\}$
- Usually we write a vector as a column:

$$
v=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)
$$

Basis and Dimension: Examples and

## Exercises

- $\operatorname{dim} \mathbb{R}^{n}=n ; e_{1}=(1,0, \ldots, 0), e_{2}=$ $(0,1,0, \ldots, 0), \ldots, e_{n}=(0, \ldots, 0,1)$ are its standard basis vectors
- $\operatorname{dim} \operatorname{Mat}_{n}(\mathbb{k})=n^{2}$ with basis matrices $E_{i j}$ (matrices with 1 at the position $(i, j)$ and zeros anywhere else)
- Vectors $(1,1)$ and $(1,-1)$ also form a basis of $\mathbb{R}^{2}$


## Linear Maps

- $F: V \rightarrow W$ is a linear map of vector spaces if
$F\left(a_{1} v_{1}+a_{2} v_{2}\right)=a_{1} F\left(v_{1}\right)+a_{2} F\left(v_{2}\right)$ for any vectors $v_{1}, v_{2}$ and numbers $a_{1}, a_{2}$.
- An isomorphism is a bijective linear map.


## Isomorphisms: Lemma

Any $n$-dimensional space $V$ over $\mathbb{k}$ is isomorphic to $\mathbb{k}^{n}$

Proof: Suppose $V=\left\langle v_{1}, \ldots, v_{n}\right\rangle$ and $\left\{e_{1}, \ldots, e_{n}\right\}$ is the standart basis in $\mathbb{k}^{n}$.
Then $F\left(v_{j}\right)=e_{j}, j=1, \ldots, n$, defines an isomorphism $F: V \rightarrow \mathbb{k}^{n}$.

## Linear Maps and Coordinates

- Suppose $F: V \rightarrow W$ is a linear map and $V$ has a basis $\left\{e_{1}, \ldots, e_{n}\right\}$
- Then its image $\operatorname{Im} F$ is a subspace in $W$, generated by $F\left(e_{1}\right), \ldots, F\left(e_{n}\right)$
- If $v=\left(v_{1}, \ldots, v_{n}\right)^{t} \in V$, then

$$
F(v)=\sum_{k=1}^{n} v_{k} F\left(e_{k}\right) .
$$

## Linear Maps and Coordinates

- If $v=\left(v_{1}, \ldots, v_{n}\right)^{t} \in V$, then

$$
F(v)=\left(\begin{array}{ccc}
F\left(e_{1}\right) & \ldots & F\left(e_{n}\right) \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots
\end{array}\right) \cdot\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right) .
$$

- It is a matrix form of a map $F$
- $\operatorname{dim} \operatorname{Im} F=\operatorname{rk} F$


## Theorem

Suppose $F: V \rightarrow W$ is a linear map and ker $F=\{v \in V \mid F(v)=0\}$ is its kernel.
Then $\operatorname{dim} \operatorname{Im} F+\operatorname{dim} \operatorname{ker} F=\operatorname{dim} V$
Proof: Suppose $\left\{e_{1}, \ldots, e_{k}\right\}$ is a basis of ker $F$ and $\left\{e_{1}, \ldots, e_{k}, e_{k+1}, \ldots, e_{n}\right\}$ is a basis of $V$.
Then $\operatorname{Im} F=\left\langle F\left(e_{k+1}\right), \ldots, F\left(e_{n}\right)\right\rangle$ and it remains to prove that these vectors are linearly independent.

## Suppose

$$
\lambda_{1} F\left(e_{k+1}\right)+\ldots+\lambda_{n-k} F\left(e_{n}\right)=0 .
$$

Then

$$
F\left(\lambda_{1} e_{k+1}+\ldots+\lambda_{n-k} e_{n}\right)=0,
$$

that is, $\lambda_{1} e_{k+1}+\ldots+\lambda_{n-k} e_{n} \in$ ker $F$. It is possible iff

$$
\lambda_{1}=\ldots=\lambda_{n-k}=0 .
$$

## Problem 1

(a) Prove that vectors $e_{1}=(1,1)$ and $e_{2}=(1,-1)$ form a basis in $\mathbb{R}^{2}$
(b) Suppose $v_{1}=(2,1)^{t}$ in the basis $\left\{e_{1}, e_{2}\right\}$. Find its coordinates in the standard basis.

Solution: (a) $\operatorname{det}\left(e_{1}, e_{2}\right)=-2 \neq 0$
(b)

$$
v_{1}=2 e_{1}+e_{2}=2(1,1)^{t}+(1,-1)^{t}=(3,1)^{t} .
$$

## Problem 2

Prove that $\operatorname{dim} \mathbb{k}[x]_{n}=n+1$ and $\mathbb{k}[x]_{n}=\left\langle 1, x, x^{2}, \ldots, x^{n}\right\rangle$.

## Solution:

$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ implies that $\mathbb{k}[x]_{n}=\left\langle 1, x, x^{2}, \ldots, x^{n}\right\rangle$;
A system $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is linearly independent since

$$
\begin{aligned}
& a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \equiv 0 \text { iff } \\
& \text { all } a_{j}=0 .
\end{aligned}
$$

## Problem 3

Prove that $\operatorname{dim} \mathbb{k}[x]=\infty$ and
$\mathbb{k}[x]=\left\langle 1, x, x^{2}, \ldots\right\rangle$.
Solution: Any
$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
implies that $\mathbb{k}[x]=\left\langle 1, x, x^{2}, \ldots\right\rangle$
We can not restrict the number of basic monomials!

## Problem 4

(a) Suppose $\mathbb{k}$ is a field and $\mathbb{F} \subset \mathfrak{k}$ is its subfield. Then $\mathbb{k}$ is a vector space over $\mathbb{F}$. (b) In particular, $\mathbb{C}$ is a 2 -dimensional vector space over $\mathbb{R}$.

Solution: (a) Obviously
(b) $\mathbb{C}=\langle 1, i\rangle$, since any $z=a+b i$. And also $a+b i=0$ iff $a=b=0$.

## Problem 5

Suppose that $\mathbb{k}$ is a finite field with char $\mathbb{k}=p$. Prove that $|\mathbb{k}|=p^{n}$ for some number $n$.

Solution: Obviously, $\mathbb{Z}_{p}$ is a subfield of $\mathfrak{k}$.
Then $\mathbb{k}$ is a vector space over $\mathbb{Z}_{p}$. Let $\operatorname{dim}_{\mathbb{Z}_{p}} \mathbb{k}=n$. Then $|\mathbb{k}|=p^{n}$.

## Subspaces

Suppose $U, V$ are subspaces of $W$. Here are some facts and definitions:

- $U \cap V$ is also a vector space
- $U+V=\{u+v \mid u \in U, v \in V\}$
- A basis of $W$ agrees with $U$, if $U$ is a span of some basis vectors
- That is, $U$ is a coordinate subspace of $W$ with respect to this basis

Theorem on 2 subspaces
Prove that there exists a basis of $W$ that agrees with subspaces of $U, V \subset W$.

## Proof:

Suppose, that $\left\langle e_{1}, \ldots, e_{k}\right\rangle$ is a basis of $U \cap V,\left\langle e_{1}, \ldots, e_{k}, e_{k+1}, \ldots, e_{p}\right\rangle$ is a basis of $U$, and $\left\langle e_{1}, \ldots, e_{k}, e_{p+1}, \ldots, e_{p+m-k}\right\rangle$ is a basis of $V$. Here $\operatorname{dim}(U \cap V)=k$, $\operatorname{dim} U=p, \operatorname{dim} V=m$.

Theorem on 2 subspaces: proof
It remains to prove that $\left\{e_{1}, \ldots, e_{p+m-k}\right\}$ is a linearly independent system. Then we can complete it to a basis of $W$.
Assume that $\sum_{j=1}^{p+m-k} \lambda_{j} e_{j}=0$. Consider the vector

$$
x=\sum_{j=1}^{p} \lambda_{j} e_{j}=-\sum_{j=p+1}^{p+m-k} \lambda_{j} e_{j} \in U \cap V
$$

It implies that $x=0$ and all $\lambda_{j}=0$.

## Problem 6

Suppose $U, V$ are subspaces of $W$. Prove that
$\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)$

Solution: In the notation of the theorem, the vectors $e_{1}, \ldots, e_{p+m-k}$ form a basis of $U+V$.
Then $\operatorname{dim}(U+V)=p+m-k$.

## Linear Independence of Subspaces

The subspaces $U_{1}, \ldots, U_{k}$ of $V$ are linearly independent if $u_{1}+\ldots+u_{k}=0, u_{j} \in U_{j}$, implies that $u_{1}=\ldots=u_{k}=0$.
The following properties are equivalent:

- $U_{1}, \ldots, U_{k}$ are linearly independent;
- the union of bases of $U_{1}, \ldots, U_{k}$ is linearly independent;

$$
\operatorname{dim}\left(U_{1}+\ldots+U_{k}\right)=\operatorname{dim} U_{1}+\ldots+\operatorname{dim} U_{k}
$$

## Direct Sum

A space $V$ is decomposed into the direct sum of its subspaces $U_{1}, \ldots, U_{k}$ if

- $U_{1}, \ldots, U_{k}$ are linearly independent;
- $V=U_{1}+\ldots+U_{k}$.

We denote it by $V=U_{1} \oplus \ldots \oplus U_{k}$.
Decomposition $v=u_{1}+\ldots+u_{k}$ is
uniquely determined, and $u_{j}$ is a projection (not orthogonal!) of $v$ on $U_{j}$.

## Problem 7

- Prove that

$$
\mathbb{R}^{2}=U_{1} \oplus U_{2}:=\langle(1,0)\rangle \oplus\langle(1,1)\rangle ;
$$

- Find the projections $(2,2)$ on $U_{1}, U_{2}$.

Solution: The 1st part is easy: the vectors
$(1,0)$ and $(1,1)$ form a basis of $\mathbb{R}^{2}$.
The 2nd part: $(2,2)=0 \cdot(1,0)+2(1,1)$.
The projections are $(0,0)$ and $(2,2)$.

