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Vector Spaces

A set 𝑉 with operations of addition
+∶ 𝑉 × 𝑉 → 𝑉 and scalar multiplication
⋅ ∶ 𝕜 × 𝑉 → 𝑉 is a vector space over 𝕜, if
for all 𝑣, 𝑣1, 𝑣2, 𝑣3 ∈ 𝑉 and 𝜆, 𝜇 ∈ 𝕜

• (𝑉 , +) is Abelian group and
• (𝜆𝜇)𝑣 = 𝜆(𝜇𝑣)
• (𝜆 + 𝜇)𝑣 = 𝜆𝑣 + 𝜇𝑣
• 𝜆(𝑣1 + 𝑣2) = 𝜆𝑣1 + 𝜆𝑣2

• 1 ⋅ 𝑣 = 𝑣.



Exercises/Examples

• 0 ⋅ 𝑣 = 0 and (−1)𝑣 = −𝑣 for any 𝑣 ∈ 𝑉
• 𝑉 = 0, 𝑉 = 𝕜 are vector spaces
• 𝑉 = 𝕜𝑛 = {(𝑥1, 𝑥2, … , 𝑥𝑛) ∣ 𝑥𝑗 ∈ 𝕜} is
a vector space, where
𝜆(𝑥1, 𝑥2, … , 𝑥𝑛) ∶= (𝜆𝑥1, 𝜆𝑥2, … , 𝜆𝑥𝑛)
and (𝑥1, 𝑥2, … , 𝑥𝑛) + (𝑦1, 𝑦2, … , 𝑦𝑛) =
= (𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛)

• Mat𝑛(𝕜) is a vector space.



Linear Independence

• a linear combination of {𝑣𝑗}𝑗∈𝐽:
∑𝑗∈𝐽 𝜆𝑗𝑣𝑗 (called trivial if all 𝜆𝑗 = 0)

• a system {𝑣𝑗}𝑗∈𝐽 is called linearly
dependent if there exists a non-trivial
linear combination ∑𝑗∈𝐽 𝜆𝑗𝑣𝑗 = 0

• Otherwise, it is linearly independent.



Basis and Dimension

• A basis of 𝑉 is maximal linearly
independent system

• 𝑉 is finite dimensional if there exists a
finite basis

• If 𝑉 is finite dimensional then all
bases consist of the same number of
elements

• This number dim 𝑉 is called the
dimension of 𝑉



Basis and Dimension

• A linear span of a subset 𝑆 ⊂ 𝑉 is a
set ⟨𝑆⟩ of all finite linear
combinations of elements from 𝑆

• If {𝑒1, … , 𝑒𝑛} is a basis of 𝑉, then
𝑉 = ⟨𝑒1, … , 𝑒𝑛⟩

• If 𝑉 = ⟨𝑒1, … , 𝑒𝑛⟩ and dim 𝑉 = 𝑛, then
any vector 𝑣 has a unique
representation 𝑣 = 𝑣1𝑒1 + … + 𝑣𝑛𝑒𝑛



Coordinates of vectors

• If 𝑉 = ⟨𝑒1, … , 𝑒𝑛⟩, dim 𝑉 = 𝑛, and
𝑣 = 𝑣1𝑒1 + … + 𝑣𝑛𝑒𝑛, then numbers
𝑣1, … , 𝑣𝑛 are called coordinates of a
vector 𝑣 in the basis {𝑒1, … , 𝑒𝑛}

• Usually we write a vector as a column:

𝑣 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑣1

𝑣2

⋮
𝑣𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠



Basis and Dimension: Examples and
Exercises

• dim ℝ𝑛 = 𝑛; 𝑒1 = (1, 0, … , 0), 𝑒2 =
(0, 1, 0, … , 0), … , 𝑒𝑛 = (0, … , 0, 1) are
its standard basis vectors

• dim Mat𝑛(𝕜) = 𝑛2 with basis matrices
𝐸𝑖𝑗 (matrices with 1 at the position
(𝑖, 𝑗) and zeros anywhere else)

• Vectors (1, 1) and (1, −1) also form a
basis of ℝ2



Linear Maps

• 𝐹∶ 𝑉 → 𝑊 is a linear map of vector
spaces if
𝐹(𝑎1𝑣1 + 𝑎2𝑣2) = 𝑎1𝐹(𝑣1) + 𝑎2𝐹(𝑣2)
for any vectors 𝑣1, 𝑣2 and numbers
𝑎1, 𝑎2.

• An isomorphism is a bijective linear
map.



Isomorphisms: Lemma

Any 𝑛-dimensional space 𝑉 over 𝕜 is
isomorphic to 𝕜𝑛

Proof: Suppose 𝑉 = ⟨𝑣1, … , 𝑣𝑛⟩ and
{𝑒1, … , 𝑒𝑛} is the standart basis in 𝕜𝑛.
Then 𝐹(𝑣𝑗) = 𝑒𝑗, 𝑗 = 1, … , 𝑛, defines an
isomorphism 𝐹∶ 𝑉 → 𝕜𝑛.



Linear Maps and Coordinates

• Suppose 𝐹∶ 𝑉 → 𝑊 is a linear map
and 𝑉 has a basis {𝑒1, … , 𝑒𝑛}

• Then its image Im 𝐹 is a subspace in
𝑊, generated by 𝐹(𝑒1), … , 𝐹(𝑒𝑛)

• If 𝑣 = (𝑣1, … , 𝑣𝑛)𝑡 ∈ 𝑉, then

𝐹(𝑣) =
𝑛

∑
𝑘=1

𝑣𝑘𝐹(𝑒𝑘).



Linear Maps and Coordinates

• If 𝑣 = (𝑣1, … , 𝑣𝑛)𝑡 ∈ 𝑉, then

𝐹(𝑣) =
⎛⎜⎜⎜
⎝

𝐹(𝑒1) … 𝐹(𝑒𝑛)
⋮ ⋮ ⋮
⋮ ⋮ ⋮
⋮ ⋮ ⋮

⎞⎟⎟⎟
⎠

⋅
⎛⎜⎜⎜
⎝

𝑣1

⋮
𝑣𝑛

⎞⎟⎟⎟
⎠

• It is a matrix form of a map 𝐹
• dim Im 𝐹 = rk 𝐹



Theorem

Suppose 𝐹∶ 𝑉 → 𝑊 is a linear map and
ker 𝐹 = {𝑣 ∈ 𝑉 ∣ 𝐹(𝑣) = 0} is its kernel.
Then dim Im 𝐹 + dim ker 𝐹 = dim 𝑉

Proof: Suppose {𝑒1, … , 𝑒𝑘} is a basis of
ker 𝐹 and {𝑒1, … , 𝑒𝑘, 𝑒𝑘+1, … , 𝑒𝑛} is a
basis of 𝑉.
Then Im 𝐹 = ⟨𝐹(𝑒𝑘+1), … , 𝐹(𝑒𝑛)⟩ and it
remains to prove that these vectors are
linearly independent.



Suppose

𝜆1𝐹(𝑒𝑘+1) + … + 𝜆𝑛−𝑘𝐹(𝑒𝑛) = 0.

Then

𝐹(𝜆1𝑒𝑘+1 + … + 𝜆𝑛−𝑘𝑒𝑛) = 0,

that is, 𝜆1𝑒𝑘+1 + … + 𝜆𝑛−𝑘𝑒𝑛 ∈ ker 𝐹. It is
possible iff

𝜆1 = … = 𝜆𝑛−𝑘 = 0.



Problem 1

(a) Prove that vectors 𝑒1 = (1, 1) and
𝑒2 = (1, −1) form a basis in ℝ2

(b) Suppose 𝑣1 = (2, 1)𝑡 in the basis
{𝑒1, 𝑒2}. Find its coordinates in the
standard basis.

Solution: (a) det (𝑒1, 𝑒2) = −2 ≠ 0
(b)
𝑣1 = 2𝑒1 +𝑒2 = 2(1, 1)𝑡 +(1, −1)𝑡 = (3, 1)𝑡.



Problem 2

Prove that dim 𝕜[𝑥]𝑛 = 𝑛 + 1 and
𝕜[𝑥]𝑛 = ⟨1, 𝑥, 𝑥2, … , 𝑥𝑛⟩.

Solution:
𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎1𝑥 + 𝑎0

implies that 𝕜[𝑥]𝑛 = ⟨1, 𝑥, 𝑥2, … , 𝑥𝑛⟩;
A system {1, 𝑥, 𝑥2, … , 𝑥𝑛} is linearly
independent since
𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎1𝑥 + 𝑎0 ≡ 0 iff
all 𝑎𝑗 = 0.



Problem 3

Prove that dim 𝕜[𝑥] = ∞ and
𝕜[𝑥] = ⟨1, 𝑥, 𝑥2, …⟩.

Solution: Any
𝑝(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + … + 𝑎1𝑥 + 𝑎0

implies that 𝕜[𝑥] = ⟨1, 𝑥, 𝑥2, …⟩
We can not restrict the number of basic
monomials!



Problem 4

(a) Suppose 𝕜 is a field and 𝔽 ⊂ 𝕜 is its
subfield. Then 𝕜 is a vector space over 𝔽.
(b) In particular, ℂ is a 2-dimensional
vector space over ℝ.

Solution: (a) Obviously
(b) ℂ = ⟨1, 𝑖⟩, since any 𝑧 = 𝑎 + 𝑏𝑖. And
also 𝑎 + 𝑏𝑖 = 0 iff 𝑎 = 𝑏 = 0.



Problem 5

Suppose that 𝕜 is a finite field with
char 𝕜 = 𝑝. Prove that |𝕜| = 𝑝𝑛 for some
number 𝑛.

Solution: Obviously, ℤ𝑝 is a subfield of 𝕜.
Then 𝕜 is a vector space over ℤ𝑝. Let
dimℤ𝑝

𝕜 = 𝑛. Then |𝕜| = 𝑝𝑛.



Subspaces

Suppose 𝑈, 𝑉 are subspaces of 𝑊. Here
are some facts and definitions:

• 𝑈 ∩ 𝑉 is also a vector space
• 𝑈 + 𝑉 = {𝑢 + 𝑣 ∣ 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 }
• A basis of 𝑊 agrees with 𝑈, if 𝑈 is a
span of some basis vectors

• That is, 𝑈 is a coordinate subspace of
𝑊 with respect to this basis



Theorem on 2 subspaces

Prove that there exists a basis of 𝑊 that
agrees with subspaces of 𝑈, 𝑉 ⊂ 𝑊.

Proof:
Suppose, that ⟨𝑒1, … , 𝑒𝑘⟩ is a basis of
𝑈 ∩ 𝑉, ⟨𝑒1, … , 𝑒𝑘, 𝑒𝑘+1, … , 𝑒𝑝⟩ is a basis of
𝑈, and ⟨𝑒1, … , 𝑒𝑘, 𝑒𝑝+1, … , 𝑒𝑝+𝑚−𝑘⟩ is a
basis of 𝑉. Here dim(𝑈 ∩ 𝑉 ) = 𝑘,
dim 𝑈 = 𝑝, dim 𝑉 = 𝑚.



Theorem on 2 subspaces: proof

It remains to prove that {𝑒1, … , 𝑒𝑝+𝑚−𝑘}
is a linearly independent system. Then
we can complete it to a basis of 𝑊.
Assume that ∑𝑝+𝑚−𝑘

𝑗=1 𝜆𝑗𝑒𝑗 = 0. Consider
the vector

𝑥 =
𝑝

∑
𝑗=1

𝜆𝑗𝑒𝑗 = −
𝑝+𝑚−𝑘

∑
𝑗=𝑝+1

𝜆𝑗𝑒𝑗 ∈ 𝑈 ∩ 𝑉 .

It implies that 𝑥 = 0 and all 𝜆𝑗 = 0.



Problem 6

Suppose 𝑈, 𝑉 are subspaces of 𝑊. Prove
that

dim(𝑈 + 𝑉 ) = dim 𝑈 + dim 𝑉 − dim (𝑈 ∩ 𝑉 ).

Solution: In the notation of the theorem,
the vectors 𝑒1, … , 𝑒𝑝+𝑚−𝑘 form a basis of
𝑈 + 𝑉.
Then dim(𝑈 + 𝑉 ) = 𝑝 + 𝑚 − 𝑘.



Linear Independence of Subspaces

The subspaces 𝑈1, … , 𝑈𝑘 of 𝑉 are linearly
independent if 𝑢1 + … + 𝑢𝑘 = 0, 𝑢𝑗 ∈ 𝑈𝑗,
implies that 𝑢1 = … = 𝑢𝑘 = 0.
The following properties are equivalent:
• 𝑈1, … , 𝑈𝑘 are linearly independent;
• the union of bases of 𝑈1, … , 𝑈𝑘 is
linearly independent;

•
dim(𝑈1 + … + 𝑈𝑘) = dim 𝑈1 + … + dim 𝑈𝑘



Direct Sum

A space 𝑉 is decomposed into the direct
sum of its subspaces 𝑈1, … , 𝑈𝑘 if
• 𝑈1, … , 𝑈𝑘 are linearly independent;
• 𝑉 = 𝑈1 + … + 𝑈𝑘.

We denote it by 𝑉 = 𝑈1 ⊕ … ⊕ 𝑈𝑘.
Decomposition 𝑣 = 𝑢1 + … + 𝑢𝑘 is
uniquely determined, and 𝑢𝑗 is a
projection (not orthogonal!) of 𝑣 on 𝑈𝑗.



Problem 7

• Prove that
ℝ2 = 𝑈1 ⊕ 𝑈2 ∶= ⟨(1, 0)⟩ ⊕ ⟨(1, 1)⟩;

• Find the projections (2, 2) on 𝑈1, 𝑈2.

Solution: The 1st part is easy: the vectors
(1, 0) and (1, 1) form a basis of ℝ2.
The 2nd part: (2, 2) = 0 ⋅ (1, 0) + 2(1, 1).
The projections are (0, 0) and (2, 2).


