LINEAR ALGEBRA

Lecture 1: Vector Spaces

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Vector Spaces

A set V with operations of addition +: $V \times V \rightarrow V$ and scalar multiplication $\cdot : \Bbbk \times V \rightarrow V$ is a vector space over \Bbbk , if for all $v, v_1, v_2, v_3 \in V$ and $\lambda, \mu \in \Bbbk$

 $\boldsymbol{\cdot}~(V,+)$ is Abelian group and

$$\boldsymbol{\cdot}~(\lambda\mu)v=\lambda(\mu v)$$

- $\cdot \ (\lambda + \mu)v = \lambda v + \mu v$
- $\boldsymbol{\cdot}\ \lambda(v_1+v_2)=\lambda v_1+\lambda v_2$

• $1 \cdot v = v$.

Exercises/Examples

- · $0 \cdot v = 0$ and (-1)v = -v for any $v \in V$
- $\cdot V = 0$, $V = \Bbbk$ are vector spaces
- $$\begin{split} \cdot \ V &= \Bbbk^n = \{(x_1, x_2, \dots, x_n) \mid x_j \in \Bbbk\} \text{ is } \\ \text{a vector space, where} \\ \lambda(x_1, x_2, \dots, x_n) &:= (\lambda x_1, \lambda x_2, \dots, \lambda x_n) \\ \text{and } (x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = \\ &= (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \end{split}$$
- $\operatorname{Mat}_n(\Bbbk)$ is a vector space.

Linear Independence

- a linear combination of $\{v_j\}_{j \in J}$: $\sum_{j \in J} \lambda_j v_j$ (called trivial if all $\lambda_j = 0$)
- a system $\{v_j\}_{j\in J}$ is called *linearly dependent* if there exists a non-trivial linear combination $\sum_{j\in J} \lambda_j v_j = 0$
- Otherwise, it is *linearly independent*.

Basis and Dimension

- A basis of V is maximal linearly independent system
- *V* is finite dimensional if there exists a finite basis
- If V is finite dimensional then all bases consist of the same number of elements
- This number dim V is called the dimension of V

Basis and Dimension

- A linear span of a subset $S \subset V$ is a set $\langle S \rangle$ of all finite linear combinations of elements from S
- If $\{e_1,\ldots,e_n\}$ is a basis of V, then $V=\langle e_1,\ldots,e_n\rangle$
- If $V = \langle e_1, \dots, e_n \rangle$ and dim V = n, then any vector v has a unique representation $v = v_1 e_1 + \dots + v_n e_n$

Coordinates of vectors

- If $V = \langle e_1, \dots, e_n \rangle$, dim V = n, and $v = v_1 e_1 + \dots + v_n e_n$, then numbers v_1, \dots, v_n are called coordinates of a vector v in the basis $\{e_1, \dots, e_n\}$
- \cdot Usually we write a vector as a column:

$$v = \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix}$$

Basis and Dimension: Examples and Exercises

- dim $\mathbb{R}^n = n$; $e_1 = (1, 0, \dots, 0), e_2 =$ (0, 1, 0, ..., 0), ..., $e_n = (0, \dots, 0, 1)$ are its standard basis vectors
- dim $Mat_n(\Bbbk) = n^2$ with basis matrices E_{ij} (matrices with 1 at the position (i, j) and zeros anywhere else)
- Vectors (1,1) and (1,-1) also form a basis of \mathbb{R}^2

Linear Maps

- $F: V \to W$ is a linear map of vector spaces if $F(a_1v_1 + a_2v_2) = a_1F(v_1) + a_2F(v_2)$ for any vectors v_1, v_2 and numbers a_1, a_2 .
- An isomorphism is a bijective linear map.

Isomorphisms: Lemma

Any $n\text{-}\mathrm{dimensional}$ space V over \Bbbk is isomorphic to \Bbbk^n

Proof: Suppose $V = \langle v_1, \dots, v_n \rangle$ and $\{e_1, \dots, e_n\}$ is the standart basis in \mathbb{k}^n . Then $F(v_j) = e_j$, $j = 1, \dots, n$, defines an isomorphism $F: V \to \mathbb{k}^n$.

Linear Maps and Coordinates

- Suppose $F: V \to W$ is a linear map and V has a basis $\{e_1, \dots, e_n\}$
- Then its image Im F is a subspace in W, generated by $F(e_1), \ldots, F(e_n)$

· If
$$v=(v_1,\ldots,v_n)^t\in V$$
 , then

$$F(v) = \sum_{k=1}^n v_k F(e_k).$$

Linear Maps and Coordinates

$$\begin{array}{c} \cdot \text{ If } v = (v_1, \ldots, v_n)^t \in V \text{, then} \\ \\ F(e_1) \quad \ldots \quad F(e_n) \\ \\ \vdots \quad \vdots \quad \vdots \quad \\ F(v) = \begin{pmatrix} \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} \end{array}$$

- \cdot It is a matrix form of a map F
- dim Im $F = \operatorname{rk} F$

Theorem

Suppose $F: V \to W$ is a linear map and ker $F = \{v \in V \mid F(v) = 0\}$ is its kernel. Then dim Im $F + \dim \ker F = \dim V$

Proof: Suppose $\{e_1, \dots, e_k\}$ is a basis of ker F and $\{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$ is a basis of V. Then Im $F = \langle F(e_{k+1}), \dots, F(e_n) \rangle$ and it

remains to prove that these vectors are linearly independent.

Suppose

$$\lambda_1 F(e_{k+1}) + \ldots + \lambda_{n-k} F(e_n) = 0.$$
 Then

 $F(\lambda_1e_{k+1}+\ldots+\lambda_{n-k}e_n)=0,$ that is, $\lambda_1e_{k+1}+\ldots+\lambda_{n-k}e_n\in\ker F.$ It is possible iff

$$\lambda_1 = \ldots = \lambda_{n-k} = 0.$$

(a) Prove that vectors $e_1 = (1, 1)$ and $e_2 = (1, -1)$ form a basis in \mathbb{R}^2 (b) Suppose $v_1 = (2, 1)^t$ in the basis $\{e_1, e_2\}$. Find its coordinates in the standard basis.

Solution: (a) det $(e_1, e_2) = -2 \neq 0$ (b) $v_1 = 2e_1 + e_2 = 2(1, 1)^t + (1, -1)^t = (3, 1)^t.$

Prove that dim $\Bbbk[x]_n = n + 1$ and $\Bbbk[x]_n = \langle 1, x, x^2, \dots, x^n \rangle$.

Solution:

$$\begin{split} p(x) &= a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \\ \text{implies that } \Bbbk[x]_n &= \langle 1, x, x^2, \ldots, x^n \rangle; \\ \text{A system } \{1, x, x^2, \ldots, x^n\} \text{ is linearly} \\ \text{independent since} \\ a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 &\equiv 0 \text{ iff} \\ \text{all } a_j &= 0. \end{split}$$

Prove that dim $\Bbbk[x] = \infty$ and $\Bbbk[x] = \langle 1, x, x^2, ... \rangle$.

Solution: Any $p(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ implies that $\Bbbk[x] = \langle 1, x, x^2, \ldots \rangle$ We can not restrict the number of basic monomials!

(a) Suppose k is a field and F ⊂ k is its subfield. Then k is a vector space over F.
(b) In particular, C is a 2-dimensional vector space over R.

Solution: (a) Obviously (b) $\mathbb{C} = \langle 1, i \rangle$, since any z = a + bi. And also a + bi = 0 iff a = b = 0.

Suppose that \Bbbk is a finite field with char $\Bbbk = p$. Prove that $|\Bbbk| = p^n$ for some number n.

Solution: Obviously, \mathbb{Z}_p is a subfield of \Bbbk . Then \Bbbk is a vector space over \mathbb{Z}_p . Let $\dim_{\mathbb{Z}_p} \Bbbk = n$. Then $|\Bbbk| = p^n$.

Subspaces

Suppose *U*, *V* are subspaces of *W*. Here are some facts and definitions:

- $\cdot \ U \cap V$ is also a vector space
- $\cdot \ U+V=\{u+v \mid u \in U, v \in V\}$
- A basis of *W* agrees with *U*, if *U* is a span of some basis vectors
- That is, *U* is a coordinate subspace of *W* with respect to this basis

Theorem on 2 subspaces

Prove that there exists a basis of W that agrees with subspaces of $U, V \subset W$.

Proof:

Suppose, that $\langle e_1, \dots, e_k \rangle$ is a basis of $U \cap V$, $\langle e_1, \dots, e_k, e_{k+1}, \dots, e_p \rangle$ is a basis of U, and $\langle e_1, \dots, e_k, e_{p+1}, \dots, e_{p+m-k} \rangle$ is a basis of V. Here $\dim(U \cap V) = k$, $\dim U = p$, $\dim V = m$.

Theorem on 2 subspaces: proof

It remains to prove that $\{e_1, \ldots, e_{p+m-k}\}$ is a linearly independent system. Then we can complete it to a basis of W. Assume that $\sum_{j=1}^{p+m-k} \lambda_j e_j = 0$. Consider the vector

$$x=\sum_{j=1}^p\lambda_je_j=-\sum_{j=p+1}^{p+m-k}\lambda_je_j\in U\cap V.$$

It implies that x = 0 and all $\lambda_j = 0$.

Suppose *U*, *V* are subspaces of *W*. Prove that

 $\dim(U+V) = \dim U + \dim V - \dim (U \cap V)$

Solution: In the notation of the theorem, the vectors e_1, \ldots, e_{p+m-k} form a basis of U + V. Then $\dim(U + V) = p + m - k$.

Linear Independence of Subspaces

The subspaces U_1, \ldots, U_k of V are linearly independent if $u_1 + \ldots + u_k = 0$, $u_j \in U_j$, implies that $u_1 = \ldots = u_k = 0$. The following properties are equivalent:

- + U_1,\ldots,U_k are linearly independent;
- the union of bases of U_1,\ldots,U_k is linearly independent;

.

 $\dim(U_1+\ldots+U_k)=\dim\,U_1+\ldots+\dim\,U_k$

Direct Sum

A space V is decomposed into the direct sum of its subspaces U_1, \ldots, U_k if

- + U_1,\ldots,U_k are linearly independent;
- $\cdot \ V = U_1 + \ldots + U_k.$

We denote it by $V = U_1 \oplus ... \oplus U_k$. Decomposition $v = u_1 + ... + u_k$ is uniquely determined, and u_j is a projection (not orthogonal!) of v on U_j .

• Prove that

 $\mathbb{R}^2 = U_1 \oplus U_2 := \langle (1,0) \rangle \oplus \langle (1,1) \rangle;$

• Find the projections (2,2) on U_1, U_2 .

Solution: The 1st part is easy: the vectors (1,0) and (1,1) form a basis of \mathbb{R}^2 . The 2nd part: $(2,2) = 0 \cdot (1,0) + 2(1,1)$. The projections are (0,0) and (2,2).