LINEAR ALGEBRA

Lecture 4: Orthogonal Basis for Quadratic Forms

Nikolay V. Bogachev

Moscow INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Bilinear Forms

A map $\alpha: V \times V \rightarrow \Bbbk$ is called a bilinear form, if it is linear in both arguments.

Let $\{e_1,\ldots,e_n\}$ be a basis of $V\!\!,$ and $x=(x_1,\ldots,x_n)\text{, }y=(y_1,\ldots,y_n)\text{ be two vectors. Then}$

$$\alpha(x,y) = \sum_{i,j=1}^n a_{ij} x_i y_j = X^T A Y.$$

Symmetric and Skew-Symmetric Forms

 α is called symmetric if $\alpha(x, y) = \alpha(y, x)$, and skew-symmetric if $\alpha(x, y) = -\alpha(y, x)$.

It is equivalent to $A^T = A$ and $A^T = -A$, respectively.

A quadratic form associated to symmetric α is $q(x) = \alpha(x, x)$.

Kernel and Non-degenerate Forms

The kernel of α : $\operatorname{Ker}(\alpha) = \{ v \in V \mid \alpha(u, v) = 0 \,\,\forall u \in V \}.$ α is called non-degenerate if $\text{Ker}(\alpha) = 0$. Clearly. $Ker(\alpha) = \{ v \mid \alpha(v, e_i) = 0, \ j = 1, \dots, n \}.$ $\dim \operatorname{Ker}(\alpha) = n - \operatorname{rk} A.$

Orthogonal Complement

The orthogonal complement of $U \subset V$ is $U^{\perp} = \{ v \in V \mid \alpha(u, v) = 0 \; \forall u \in U \}.$

Clearly, $V^{\perp} = \operatorname{Ker}(\alpha)$.

If α is non-degenerate, then

 $\dim U^{\perp} = \dim V - \dim U and (U^{\perp})^{\perp} = U.$

Non-degenerate subspaces

A subspace $U \subset V$ is non-degenerate with respect to α if $\alpha \mid_U$ is non-degenerate.

 $V = U \oplus U^{\perp}$ iff U is non-degenerate.

Orthogonal basis

A basis $\{e_1, \dots, e_n\}$ is orthogonal with respect to α if $\alpha(e_i, e_j) = 0$ for all $i \neq j$.

For any symmetric α there exists an orthogonal basis.

Proof: Induction by $n = \dim V$. If $\alpha \neq 0$, then $q(x) \neq 0$. Then $\exists e_1 : q(e_1) \neq 0$. Then $V = \langle e_1 \rangle \oplus \langle e_1 \rangle^{\perp}$, where $\dim \langle e_1 \rangle^{\perp} = n - 1$.