Linear Algebra
 Lecture 4: Orthogonal Basis for Quadratic Forms

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Bilinear Forms

A map $\alpha: V \times V \rightarrow \mathbb{k}$ is called a bilinear form, if it is linear in both arguments.

Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V, and $x=\left(x_{1}, \ldots, x_{n}\right), y=\left(y_{1}, \ldots, y_{n}\right)$ be two vectors. Then

$$
\alpha(x, y)=\sum_{i, j=1}^{n} a_{i j} x_{i} y_{j}=X^{T} A Y
$$

Symmetric and Skew-Symmetric Forms

α is called symmetric if $\alpha(x, y)=\alpha(y, x)$, and skew-symmetric if $\alpha(x, y)=-\alpha(y, x)$.

It is equivalent to $A^{T}=A$ and $A^{T}=-A$, respectively.

A quadratic form associated to symmetric α is $q(x)=\alpha(x, x)$.

Kernel and Non-degenerate Forms

The kernel of α :
$\operatorname{Ker}(\alpha)=\{v \in V \mid \alpha(u, v)=0 \forall u \in V\}$.
α is called non-degenerate if $\operatorname{Ker}(\alpha)=0$.
Clearly,
$\operatorname{Ker}(\alpha)=\left\{v \mid \alpha\left(v, e_{j}\right)=0, j=1, \ldots, n\right\}$.
$\operatorname{dim} \operatorname{Ker}(\alpha)=n-\operatorname{rk} A$.

Orthogonal Complement

The orthogonal complement of $U \subset V$ is
$U^{\perp}=\{v \in V \mid \alpha(u, v)=0 \forall u \in U\}$.
Clearly, $V^{\perp}=\operatorname{Ker}(\alpha)$.
If α is non-degenerate, then
$\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U$ and $\left(U^{\perp}\right)^{\perp}=U$.

Non-degenerate subspaces

A subspace $U \subset V$ is non-degenerate with respect to α if $\left.\alpha\right|_{U}$ is non-degenerate.
$V=U \oplus U^{\perp}$ iff U is non-degenerate.

Orthogonal basis

A basis $\left\{e_{1}, \ldots, e_{n}\right\}$ is orthogonal with respect to α if $\alpha\left(e_{i}, e_{j}\right)=0$ for all $i \neq j$.

For any symmetric α there exists an orthogonal basis.

Proof: Induction by $n=\operatorname{dim} V$. If $\alpha \not \equiv 0$, then $q(x) \not \equiv 0$. Then $\exists e_{1}: q\left(e_{1}\right) \neq 0$.
Then $V=\left\langle e_{1}\right\rangle \oplus\left\langle e_{1}\right\rangle^{\perp}$, where $\operatorname{dim}\left\langle e_{1}\right\rangle^{\perp}=n-1$.

