LINEAR ALGEBRA

Lecture 4: Quadratic Forms over Finite Fields

Nikolay V. Bogachev

Moscow INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Quadratic Residues

Let $k = \mathbb{Z}_p$ with a prime $p \neq 2$. Then \mathbb{Z}_p^* is a cyclic group and $(\mathbb{Z}_p^*)^2 = \{a^2 \mid a \in \mathbb{Z}_p^*\}$ is its subgroup of index 2.

Elements of $(\mathbb{Z}_p^*)^2$ are called quadratic residues, and elements from $\mathbb{Z}_p^* \setminus (\mathbb{Z}_p^*)^2$ are quadratic nonresidues.

Quadratic Equation over \mathbb{Z}_p

For every non-degenerate quadratic form q over \mathbb{Z}_p , $(p \neq 2)$, there \exists a solution of q(x) = 1.

Proof: n = 2: $q(x) = a_1x_1^2 + a_2x_2^2$, $a_1, a_2 \neq 0$. Then we solve $a_1x_1^2 = 1 - a_2x_2^2$. The left-hand side assumes $\frac{p+1}{2}$ distinct values and the right-hand side as well. Since $\frac{p+1}{2} + \frac{p+1}{2} > p$, then there exists a common value for both sides.

Normal Forms over \mathbb{Z}_p

Every non-degenerate quadratic form qover \mathbb{Z}_p , $(p \neq 2)$, can be reduced to $x_1^2 + \ldots + x_n^2$ or $x_1^2 + \ldots + x_{n-1}^2 + \varepsilon x_n^2$, where ε is a quadratic non-residue.

Proof: For $n \ge 2 \exists e_1: q(e_1) = 1$. Then we have $V = \langle e_1 \rangle \oplus \langle e_1 \rangle^{\perp}$. And we can continue the procedure. Finally, it remains $q(e_n)$.

Normal Forms over \mathbb{Z}_p

Proof continuation: That is, $Q' = \operatorname{diag}(1, \dots, 1, q(e_n)) = C^T Q C$ and $\det Q' = (\det C)^2 \cdot \det Q.$

It implies that $q(e_n)$ will be a quadratic residue or nonresidue depending on det Q.

Symplectic Basis

Let α be a skew-symmetric over any k. Then there \exists a (symplectic) basis s.t. the matrix of α is the direct sum of blocks

$$U = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Proof: There $\exists e_1, e_2$ such that $\alpha(e_1, e_2) = -\alpha(e_2, e_1) = 1$. That is, $\operatorname{Mat}(\alpha \mid_{\langle e_1, e_2 \rangle}) = U$. It remains to use that $V = \langle e_1, e_2 \rangle \oplus \langle e_1, e_2 \rangle^{\perp}$.