Linear Algebra
 Lecture 4: Quadratic Forms over Finite Fields

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Quadratic Residues

Let $\mathrm{k}=\mathbb{Z}_{p}$ with a prime $p \neq 2$. Then \mathbb{Z}_{p}^{*} is a cyclic group and $\left(\mathbb{Z}_{p}^{*}\right)^{2}=\left\{a^{2} \mid a \in \mathbb{Z}_{p}^{*}\right\}$ is its subgroup of index 2 .

Elements of $\left(\mathbb{Z}_{p}^{*}\right)^{2}$ are called quadratic residues, and elements from $\mathbb{Z}_{p}^{*} \backslash\left(\mathbb{Z}_{p}^{*}\right)^{2}$ are quadratic nonresidues.

Quadratic Equation over \mathbb{Z}_{p}

For every non-degenerate quadratic form q over $\mathbb{Z}_{p},(p \neq 2)$, there \exists a solution of $q(x)=1$.

Proof: $n=2: q(x)=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}, a_{1}, a_{2} \neq 0$.
Then we solve $a_{1} x_{1}^{2}=1-a_{2} x_{2}^{2}$. The left-hand side assumes $\frac{p+1}{2}$ distinct values and the right-hand side as well. Since $\frac{p+1}{2}+\frac{p+1}{2}>p$, then there exists a common value for both sides.

Normal Forms over \mathbb{Z}_{p}

Every non-degenerate quadratic form q over $\mathbb{Z}_{p},(p \neq 2)$, can be reduced to $x_{1}^{2}+\ldots+x_{n}^{2}$ or $x_{1}^{2}+\ldots+x_{n-1}^{2}+\varepsilon x_{n}^{2}$, where ε is a quadratic non-residue.

Proof: For $n \geq 2 \exists e_{1}: q\left(e_{1}\right)=1$. Then we have $V=\left\langle e_{1}\right\rangle \oplus\left\langle e_{1}\right\rangle^{\perp}$. And we can continue the procedure. Finally, it remains $q\left(e_{n}\right)$.

Normal Forms over \mathbb{Z}_{p}

Proof continuation: That is,
$Q^{\prime}=\operatorname{diag}\left(1, \ldots, 1, q\left(e_{n}\right)\right)=C^{\top} Q C$ and $\operatorname{det} Q^{\prime}=(\operatorname{det} C)^{2} \cdot \operatorname{det} Q$.

It implies that $q\left(e_{n}\right)$ will be a quadratic residue or nonresidue depending on $\operatorname{det} Q$.

Symplectic Basis

Let α be a skew-symmetric over any k.
Then there \exists a (symplectic) basis s.t. the matrix of α is the direct sum of blocks

$$
U=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

Proof: There $\exists e_{1}, e_{2}$ such that $\alpha\left(e_{1}, e_{2}\right)=-\alpha\left(e_{2}, e_{1}\right)=1$. That is,
$\operatorname{Mat}\left(\left.\alpha\right|_{\left\langle e_{1}, e_{2}\right\rangle}\right)=U$. It remains to use that $V=\left\langle e_{1}, e_{2}\right\rangle \oplus\left\langle e_{1}, e_{2}\right\rangle^{\perp}$.

