Linear Operators

LA7 \diamond. Find the matrix of a linear operator $X \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) X$ in the space $\operatorname{Mat}_{2}(\mathbb{R})$ with the standard basis.

LA7 \diamond 2. Prove that an eigenspace $V_{\lambda}(A)$ of an operator A is an invariant subspace for each operator B such that $A B=B A$.

LA7 \diamond. Give an example of an operator A on some Euclidean (or Hermitian) vector space such that it has an invariant subspace U and $A\left(U^{\perp}\right) \not \subset U^{\perp}$ (it is a counter-example to the Theorem 5.1 in lecture notes for a general operator).

LA7 $\diamond 4$. Suppose $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of some matrix A. Find the eigenvalues of an operator
(a) $X \mapsto A X A$ in the space $\operatorname{Mat}_{n}(\mathbb{R})$,
(b) $X \mapsto A X A^{-1}$ in the space $\operatorname{Mat}_{n}(\mathbb{R})$.

LA7 $\diamond 5$. Is it true that a matrix of a symmetric operator should be symmetric in all bases?
LA7 \diamond. Suppose $f(t)=f_{1}(t) f_{2}(t)$ is a decomposition of a polynomial $f(t)$ into the product of two relatively prime polynomials and suppose that $f(A)=0$ for some linear operator A (over \mathbb{R} or \mathbb{C}). Prove that there exists a basis such that

$$
A \simeq\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)
$$

where $f_{1}\left(A_{1}\right)=f_{2}\left(A_{2}\right)=0$.
LA7 \diamond 7. Suppose A, B are some linear operators in the same vector space V. Prove that $f_{A B}(t) \equiv f_{B A}(t)$.

