Linear Operators

LA7•1. Find the matrix of a linear operator $X \mapsto \begin{pmatrix} a & b \\ c & d \end{pmatrix} X$ in the space $Mat_2(\mathbb{R})$ with the standard basis.

LA7 \diamond **2.** Prove that an eigenspace $V_{\lambda}(A)$ of an operator *A* is an invariant subspace for each operator *B* such that AB = BA.

LA7 \diamond **3.** Give an example of an operator *A* on some Euclidean (or Hermitian) vector space such that it has an invariant subspace *U* and $A(U^{\perp}) \not\subset U^{\perp}$ (*it is a counter-example to the Theorem 5.1 in lecture notes for a general operator*).

LA7\diamond4. Suppose $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of some matrix *A*. Find the eigenvalues of an operator

(a) $X \mapsto AXA$ in the space $Mat_n(\mathbb{R})$,

(b) $X \mapsto AXA^{-1}$ in the space $Mat_n(\mathbb{R})$.

LA7 \$\. Is it true that a matrix of a symmetric operator should be symmetric in all bases?

LA76. Suppose $f(t) = f_1(t)f_2(t)$ is a decomposition of a polynomial f(t) into the product of two relatively prime polynomials and suppose that f(A) = 0 for some linear operator A (over \mathbb{R} or \mathbb{C}). Prove that there exists a basis such that

$$A \simeq \begin{pmatrix} A_1 & 0 \\ 0 & A_2 \end{pmatrix},$$

where $f_1(A_1) = f_2(A_2) = 0$.

LA7 \diamond **7.** Suppose *A*, *B* are some linear operators in the same vector space *V*. Prove that $f_{AB}(t) \equiv f_{BA}(t)$.