Convex Polytopes

All polytopes (polyhedra) here are assumed to be convex.
LA6 \diamond 1. Prove that every face of a polytope P is contained in a facet (of codim 1).
LA6 8 2. Determine the faces of the n-simplex.
LA6 \diamond 3. Given a 3-dimensional compact polytope such that every two vertices are adjacent, show that it is a tetrahedron.

LA6 $\diamond 4$. Describe (in coordinates) the faces of the intersection of the n-dimensional cube $P=\left\{0 \leq x_{k} \leq 1 \mid k=1, \ldots, n\right\}$ with the hyperplane $x_{1}+\ldots+x_{n}=\frac{n}{2}$.

LA6 \diamond. Prove that the convex hull of any finite set of points that are in general position in \mathbb{R}^{d} (there are no $d+1$ points in one hyperplane) is a simplicial compact polytope, i.e. all of whose proper faces are simplices.

LA6 \triangleleft 6. Show that if a compact polytope is both simple (a polytope in \mathbb{R}^{d} is simple if every vertex belongs to exactly d facets) and simplicial, then it is a simplex or an n-gon.

LA6 \diamond 7. Show that every compact polytope is affinely isomorphic to a bounded intersection of an orthant with an affine subspace.

