Quadratic Forms and Symmetric Bilinear Functions

LA4 \diamond **1.** Find the matrix of a bilinear function in new basis (e'_1, e'_2, e'_3), if it has the matrix

$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

in the old basis (e_1, e_2, e_3) , where

$$e_1' = e_1 - e_2, \quad e_2' = e_1 + e_3, \quad e_3' = e_1 + e_2 + e_3.$$

LA42. Prove that the determinant of a skew-symmetric integral matrix is a square of some integer number.

LA4 \diamond **3.** Suppose *f* is a skew-symmetric bilinear function on a space *V*, *W* is a subspace of *V* and W^{\perp} is its orthogonal complement with respect to *f*. Prove that dim W-dim($W \cap W^{\perp}$) is an even number.

LA4 4. Are the bilinear functions with matrices

(1)	2	3)		(1)	3	0)	
2	0	-1	,	3	1	1	
(3	-1	3)		0	1	5)	

isomorphic to each other?

LA4 \diamond **5.** Find all $\lambda \in \mathbb{R}$ for which the quadratic form

$$q(x) = 5x_1^2 + x_2^2 + \lambda x_3^2 + 4x_1x_2 - 2x_1x_3 - 2x_2x_3$$

is positive definite.

LA4\diamond6. Find the positive and negative inertial indices of the quadratic form $q(x) = \text{tr } x^2$ on the space $\text{Mat}_n(\mathbb{R})$.