Linear Maps, Linear Functions and Bilinear Forms

LA31. Suppose that a linear map $A: V \to W$ in the bases (v_1, v_2, v_3) of V and (w_1, w_2) of W has the matrix

$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}.$$

Find the matrix of *A* in bases $(v_1, v_1 + v_2, v_1 + v_2 + v_3)$ and $(w_1, w_1 + w_2)$.

LA32. Suppose *f* is a nonzero linear function on some vector space *V* and $U = \ker f$. Prove that $V = U \oplus \langle a \rangle$ for any $a \notin U$.

LA3 \$3. Find the number of all

- (a) linear functions $f \colon \mathbb{F}_q^n \to \mathbb{F}_q$.
- (b) linear injective maps $f \colon \mathbb{F}_q^n \to \mathbb{F}_q^k$.
- (c) linear maps $f \colon \mathbb{F}_q^n \to \mathbb{F}_q^k$.

LA34. Which of the following functions are bilinear and which are symmetric? Here $A, B \in Mat_n(\mathbb{R})$.

(a) $f(A, B) = A^T B$ (b) f(A, B) = tr (AB)(c) f(A, B) = tr (AB - BA)(d) f(A, B) = tr (A + B)(e) $f(A, B) = \det(AB)$ (f) $f(A, B) = (AB)_{ij}$ (g) $\alpha(f, g) = \int_a^b f(x)g(x)dx$ on the space C[a, b].

LA35. Prove that f(A, B) = tr(AB) and $\alpha(f, g) = \int_a^b f(x)g(x)dx$ are non-degenerate forms.

LA36. Suppose $V = \mathbb{R}[x]_n$. Prove that linear functions $\varphi_0, \varphi_1, \dots, \varphi_n$ on V, given by $\varphi_k(p) = p^{(k)}(0)$, form a basis of V^* .