Vector Spaces

LA1 $\diamond \mathbf{1}$. Find a basis of the vector space $V=\left\{p(x) \in \mathbb{R}[x]_{4} \mid p^{\prime}(5)=0\right\}$.
LA1 $\diamond \mathbf{2}$. Find a dimension and a basis of the vector space
(a) $\operatorname{Mat}_{n}^{+}(\mathbb{R})$ of all symmetric matrices $A=A^{T} \in \operatorname{Mat}_{n}(\mathbb{R})$.
(b) $\operatorname{Mat}_{n}^{-}(\mathbb{R})$ of all skew-symmetric matrices $A=-A^{T} \in \operatorname{Mat}_{n}(\mathbb{R})$.
(c) $\mathfrak{s l}_{n}(\mathbb{R})=\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}) \mid \operatorname{tr} A:=a_{11}+a_{22}+\ldots+a_{n n}=0\right\}$.
$\mathbf{L A 1} \diamond 3$. Prove that $\operatorname{Mat}_{n}(\mathbb{R})=\operatorname{Mat}_{n}^{+}(\mathbb{R}) \oplus \operatorname{Mat}_{n}^{-}(\mathbb{R})$
LA1 $\diamond 4$. Give an example of a finite dimensional space V and three its pairwise transversal subspaces U, W, T (that is, intersecting only at the origin) such that

$$
\operatorname{dim} U+\operatorname{dim} W+\operatorname{dim} T=\operatorname{dim} V,
$$

but $U+W+T \neq V$.
LA1 $\diamond 5$. Is it true that
$\operatorname{dim}(U+V+W)=\operatorname{dim} U+\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim}(U \cap V)-\operatorname{dim}(U \cap W)-\operatorname{dim}(W \cap V)+\operatorname{dim}(U \cap V \cap W) ?$

LA1 \diamond 6. Suppose $\operatorname{dim}(U+V)=\operatorname{dim}(U \cap V)+1$ for some two vector subspaces $U, V \subset \mathbb{R}^{n}$. Is it true that $U+V$ is equal to one of the subspaces U, V and $U \cap V$ is equal to another?

LA1 $\diamond 7$. Let V be a vector space of dimension n over the finite field \mathbb{F}_{q} of q elements. How many
(a) vectors
(b) bases
(c) k-dimensional subspaces
are there in V ?
LA1 $\diamond 8$. Prove that the vector space of all continuous functions on \mathbb{R} is infinite dimensional.

