Vector Spaces

LA1•1. Find a basis of the vector space $V = \{p(x) \in \mathbb{R}[x]_4 \mid p'(5) = 0\}$.

LA1³. Find a dimension and a basis of the vector space

- (a) $\operatorname{Mat}_{n}^{+}(\mathbb{R})$ of all symmetric matrices $A = A^{T} \in \operatorname{Mat}_{n}(\mathbb{R})$.
- (b) $\operatorname{Mat}_{n}^{-}(\mathbb{R})$ of all skew-symmetric matrices $A = -A^{T} \in \operatorname{Mat}_{n}(\mathbb{R})$.
- (c) $\mathfrak{sl}_n(\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) \mid \operatorname{tr} A := a_{11} + a_{22} + \ldots + a_{nn} = 0\}.$

LA1 \diamond **3.** Prove that $Mat_n(\mathbb{R}) = Mat_n^+(\mathbb{R}) \oplus Mat_n^-(\mathbb{R})$

LA14. Give an example of a finite dimensional space *V* and three its pairwise transversal subspaces *U*, *W*, *T* (that is, intersecting only at the origin) such that

 $\dim U + \dim W + \dim T = \dim V,$

but $U + W + T \neq V$.

LA1 \diamond 5. Is it true that

 $\dim(U+V+W) = \dim U + \dim V + \dim W - \dim(U \cap V) - \dim(U \cap W) - \dim(W \cap V) + \dim(U \cap V \cap W)?$

LA1 \diamond **6.** Suppose dim $(U + V) = \dim(U \cap V) + 1$ for some two vector subspaces $U, V \subset \mathbb{R}^n$. Is it true that U + V is equal to one of the subspaces U, V and $U \cap V$ is equal to another?

LA1 \diamond **7.** Let *V* be a vector space of dimension *n* over the finite field \mathbb{F}_q of *q* elements. How many

(a) vectors (b) bases (c) *k*-dimensional subspaces are there in *V*?

LA1 \diamond 8. Prove that the vector space of all continuous functions on \mathbb{R} is infinite dimensional.