LINEAR AlgEBRA
 Lecture 1: Preliminaries

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applications

Operations

By an operation on a set M we mean a map

$$
\circ: M \times M \rightarrow M
$$

Examples of algebraic structures (M, \circ) :
$\cdot(\mathbb{N},+),(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$
$\cdot(\mathbb{N}, \cdot),(\mathbb{Z}, \cdot),(\mathbb{Q}, \cdot),(\mathbb{R}, \cdot),(\mathbb{C}, \cdot)$

- A set $C[0,1]$ of continuous functions on $[0,1]$ with an operation of composition: $(f \circ g)(x)=f(g(x))$

Polynomials

Suppose \mathfrak{k} is some set of numbers.
Then a polynomial over \mathfrak{k} is:
$p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$,
where $a_{n} \neq 0$. Then
$\operatorname{deg}(p):=n ;$
$\mathbb{k}[x]:=$ is a set of all polynomials;
$\mathbb{k}[x]_{n}:=\{p \in \mathbb{k}[x] \mid \operatorname{deg}(p) \leq n\}$.

Matrices

Suppose k is some set of numbers.
A matrix over \mathfrak{k} is a table $m \times n$

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]
$$

$\operatorname{Mat}_{m, n}(\mathbb{k}):=$ a set of all matrices;
$\operatorname{Mat}_{n}(\mathbb{k}):=\operatorname{Mat}_{n, n}(\mathbb{k}) ;$
$\mathrm{GL}_{n}(\mathbb{k})=\mathrm{GL}(n, \mathbb{k}):=$
$:=\left\{A \in \operatorname{Mat}_{n}(\mathbb{k}) \mid \operatorname{det}(A) \neq 0\right\}$.

Addition of matrices

$$
\begin{aligned}
& \text { For } A, B \in \operatorname{Mat}_{m, n}(\mathbb{k}) \text { we define } \\
& A+B \in \operatorname{Mat}_{m, n}(\mathbb{k}) \text { as: } \\
& A+B= \\
& =\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right]+\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{m 1} & \ldots & b_{m n}
\end{array}\right]= \\
& =\left[\begin{array}{ccc}
a_{11}+b_{11} & \ldots & a_{1 n}+b_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1}+b_{m 1} & \ldots & a_{m n}+b_{m n}
\end{array}\right]
\end{aligned}
$$

Multiplication of matrices

For $A \in \operatorname{Mat}_{m, n}(\mathbb{k})$ and $B \in \operatorname{Mat}_{n, r}(\mathbb{k})$ we define $A \cdot B \in \operatorname{Mat}_{m, r}(\mathbb{k})$ as:

$$
\begin{aligned}
A \cdot B= & {\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right] \cdot\left[\begin{array}{ccc}
b_{11} & \cdots & b_{1 r} \\
\vdots & \ddots & \vdots \\
b_{n 1} & \cdots & b_{n r}
\end{array}\right]=} \\
& =\left[c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}\right]_{i=1, j=1}^{m, r}
\end{aligned}
$$

$$
c_{i j} \text { is }\left\langle\left(a_{i 1}, a_{i 2}, \ldots, a_{i n}\right),\left(b_{1 j}, b_{2 j}, \ldots, b_{n j}\right)\right\rangle
$$

Exercises

Are the following pairs (M, \circ) correctly defined algebraic structures:
$\cdot\left(\mathbb{Z}_{-}, \cdot\right)$, where

$$
\mathbb{Z}_{-}=-\mathbb{N}=\{z \in \mathbb{Z} \mid z<0\}
$$

- $(\mathbb{k}[x],+),(\mathbb{K}[x], \cdot)$
- $\left(\mathbb{K}[x]_{n},+\right),\left(\mathbb{K}[x]_{n}, \cdot\right)$
- $\left(\operatorname{Mat}_{m, n}(\mathbb{k}),+\right),\left(\operatorname{Mat}_{m, n}(\mathbb{k}), \cdot\right)$
- $\left(\operatorname{Mat}_{n}(\mathbb{k}), \cdot\right)$
$\cdot\left(\mathrm{GL}_{n}(\mathbb{k}),+\right),\left(\mathrm{GL}_{n}(\mathbb{k}), \cdot\right)$?

Isomorphism of algebraic structures

Algebraic structures (M, \circ) and ($N, *$) are isomorphic if there exists a bijective map
$f: M \rightarrow N$, s.t. $f(a \circ b)=f(a) * f(b)$.
We denote it as $(M, \circ) \simeq(N, *)$.
Example: A map $a \mapsto 2^{a}$ defines an isomorphism $(\mathbb{R},+) \simeq\left(\mathbb{R}_{+}, \cdot\right)$.

Groups

A set G with an operation o is called a group if it has the properties:

- $(a \circ b) \circ c=a \circ(b \circ c)$ (associativity)
- there exists (the identity) $e \in G$, such that $a \circ e=e \circ a=a$ for all $a \in G$
- for any $a \in G$ there $\exists a^{-1} \in G$ (an inverse), s.t. $a \circ a^{-1}=a^{-1} \circ a=e$. A group G is Abelian if $a \circ b=b \circ a$ (commutativity).

Examples of groups

$\cdot(\mathbb{Z},+),(\mathbb{Q},+),(\mathbb{R},+),(\mathbb{C},+)$
$\cdot(\mathbb{Q}, \cdot),(\mathbb{R}, \cdot),(\mathbb{C}, \cdot)$

- $(\mathbb{k}[x],+),\left(\mathbb{K}[x]_{n},+\right)$
- $\left(\operatorname{Mat}_{m, n}(\mathbb{k}),+\right)$
- $\left(\mathrm{GL}_{n}(\mathbb{k}), \cdot\right)$
- $(C[0,1],+)$.

Exercise: Verify it!

Rings

A set K with two operation + and . is called a ring if it has the properties:

- $(K,+)$ is Abelian group (the additive group)
- $a(b+c)=a b+a c$ and $(b+c) a=b a+c a$ for all $a, b, c, \in K$ (distributive laws).

Exercises

- $a 0=0 a=a$ for any $a \in K$
- $a(-b)=(-a) b=-a b$ for any $a, b \in K$
- $a(b-c)=a b-a c$ for any $a, b, c \in K$
$\cdot \mathbb{Z}, \mathbb{Q}, \mathbb{R}$ are commutative associative rings with unities
$\cdot 2 \mathbb{Z}$ is commutative associative ring without unity

Fields
A field is a commutative associative ring with unity where every nonzero element is invertible.

- Usually denoted by \mathfrak{k} or \mathbb{F}
- A ring $\{0\}$ is not regarded as a field
- $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ are fields (Verify!)
- $\mathbb{Z}_{2}=\{0,1\}$ can be considered as a field (Verify!).

Vector Spaces

A set V with operations of addition $+: V \times V \rightarrow V$ and scalar multiplication $\cdot: \mathbb{k} \times V \rightarrow V$ is a vector space over \mathfrak{k}, if for all $v, v_{1}, v_{2}, v_{3} \in V$ and $\lambda, \mu \in \mathbb{k}$

- $(V,+)$ is Abelian group and
- $(\lambda \mu) v=\lambda(\mu v)$
- $(\lambda+\mu) v=\lambda v+\mu v$
- $\lambda\left(v_{1}+v_{2}\right)=\lambda v_{1}+\lambda v_{2}$
$\cdot 1 \cdot v=v$.

Exercises/Examples

$\cdot 0 \cdot v=v$ and $(-1) v=-v$ for any $v \in V$

- $V=0, V=\mathbb{k}$ are vector spaces
- $V=\mathbb{k}^{n}=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid x_{j} \in \mathbb{k}\right\}$ is a vector space, where

$$
\begin{aligned}
& \lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right):=\left(\lambda x_{1}, \lambda x_{2}, \ldots, \lambda x_{n}\right) \\
& \text { and }\left(x_{1}, x_{2}, \ldots, x_{n}\right)+\left(y_{1}, y_{2}, \ldots, y_{n}\right)= \\
& =\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots, x_{n}+y_{n}\right)
\end{aligned}
$$

- $\left(\operatorname{Mat}_{n}(\mathbb{k}),+, \cdot\right)$ is a vector space.

