LECTURE 7: LINEAR OPERATORS

NIKOLAY BOGACHEV

Contents

\S 1. Definition, coordinates and preliminaries 1
§ 2. Invariant subspaces, eigenvectors and eigenvalues 2
2.1. Invariant subspaces 2
2.2. Eigenvectors and eigenvalues 2
§ 3. Existence of a 1-dim or 2-dim invariant subspace for an operator in a real vector space 3
§ 4. Linear operators in Euclidean and Hermitian spaces 3
4.1. Euclidean spaces 3
4.2. Hermitian spaces 4
§ 5. Orthonormal eigenbasis for a symmetric operator 4
§ 6. Canonical form of an orthogonal operator 5
§ 7. Orthonormal basis for a Hermitian and a unitary operator 5
§ 8. Polar decomposition 5
§ 9. Exercises 6

§ 1. Definition, coordinates and preliminaries

Let V be a vector space over field $\mathbb{F}=\mathbb{R}, \mathbb{C}, \ldots$, etc.
Definition 1.1. A linear map $\mathcal{A}: V \rightarrow V$ is called a linear operator.
The matrix of an operator \mathcal{A} in the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ is $A=\left(a_{i j}\right)$, where the j-th column of A is $\mathcal{A}\left(e_{j}\right)=\mathcal{A} e_{j}=\sum_{i=1}^{n} a_{i j} e_{i}$. That is,

$$
\left(\mathcal{A} e_{1}, \ldots, \mathcal{A} e_{n}\right)=\left(e_{1}, \ldots, e_{n}\right) A .
$$

We write $A=\operatorname{Mat}(\mathcal{A})$. If $y=\mathcal{A} x$, then in the matrix form one can write $Y=A X$.
Let $\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)=\left(e_{1}, \ldots, e_{n}\right) C$ be another basis of V. Then

$$
\left(\mathcal{A} e_{1}^{\prime}, \ldots, \mathcal{A} e_{n}^{\prime}\right)=\left(\mathcal{A} e_{1}, \ldots, \mathcal{A} e_{n}\right) C=\left(e_{1}, \ldots, e_{n}\right) A C=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) C^{-1} A C
$$

Thus,

$$
A^{\prime}=C^{-1} A C
$$

Main Question: How can we change a basis in such a way that the operator matrix has a "simple" form?

§ 2. Invariant subspaces, eigenvectors and eigenvalues

2.1. Invariant subspaces.

Definition 2.1. A subspace $U \subset V$ is invariant with respect to $\mathcal{A}: V \rightarrow V$ if $\mathcal{A} U \subset U$, i.e. $\mathcal{A} u \in U$ for any $u \in U$.

The restriction on an invariant subspace is a well-defined linear operator: $\left.\mathcal{A}\right|_{U}: U \rightarrow U$. In the basis of V that agrees with U the matrix of \mathcal{A} has the following form:

$$
\left(\begin{array}{cc}
A_{U} & B \\
0 & C
\end{array}\right),
$$

where $A_{U}=\operatorname{Mat}\left(\left.\mathcal{A}\right|_{U}\right)$.
If $V=V_{1} \oplus \ldots \oplus V_{k}$, where all V_{j} are invariant, then

$$
A=\operatorname{diag}\left(A_{1}, \ldots, A_{k}\right)=\left(\begin{array}{ccc}
A_{1} & & 0 \\
& \ddots & \\
0 & & A_{k}
\end{array}\right)
$$

where $A_{j}=\operatorname{Mat}\left(\left.\mathcal{A}\right|_{V_{j}}\right)$.
Example 1. $A=\operatorname{diag}\left(a_{1}, a_{2}\right)$, where $V=\mathbb{R}^{2}=\left\langle e_{1}\right\rangle \oplus\left\langle e_{1}\right\rangle$.

2.2. Eigenvectors and eigenvalues.

Definition 2.2. A vector $v \in V$ is called an eigenvector for an operator $\mathcal{A}: V \rightarrow V$ if $\mathcal{A} v=\lambda v$ for some number $\lambda \in \mathbb{F}$. The corresponding number $\lambda \in \mathbb{F}$ is called an eigenvalue.

If $\mathcal{A} v=\lambda v$, then $\langle v\rangle$ is an invariant subspace for \mathcal{A}. It is easy to verify that in the basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of eigenvectors of \mathcal{A} we have

$$
A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

Geometrically, eigenvectors are exactly the directions, where an operator acts by stretching of a space by the corresponding eigenvalues.

The natural question arises here: how can we calculate eigenvectors and eigenvalues?
The answer is the following: $\mathcal{A} v=\lambda v$ if and only if the operator $\mathcal{A}-\lambda \mathcal{I}$ is singular (degenerate), where I is the identical operator on $V: \mathcal{I} x:=\operatorname{Id}(x) \equiv x$.

The last is equivalent to the fact that

$$
\operatorname{det}(A-\lambda E)=0
$$

Definition 2.3. The space $V_{\lambda}(\mathcal{A}):=\operatorname{Ker}(\mathcal{A}-\lambda \mathcal{I})$ is called the eigenspace of \mathcal{A} associated with the eigenvalue λ.

Definition 2.4. The characteristic polynomial of \mathcal{A} is

$$
f_{\mathcal{A}}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda E)
$$

Eigenvalues are exactly the roots of the characteristic polynomial. When the eigenvalues are already known, one can calculate the eigenvalues in the following way: it remains just to find all non-zero solution of a system of linear equations: $(\mathcal{A}-\lambda \mathcal{I}) x=0$.

Theorem 2.1. The following holds:
(1) $\operatorname{dim} V_{\lambda}(\mathcal{A}) \leq$ the multiplicity of λ in $f_{\mathcal{A}}$,
(2) $V_{\lambda_{1}}(\mathcal{A}), \ldots, V_{\lambda_{s}}(\mathcal{A})$ are linearly independent for different lambda's.

Proof. Sketch.
Part (1): It is enough to consider the matrix of \mathcal{A} in the basis of V that agrees with $\operatorname{dim} V_{\lambda}(\mathcal{A})$. If $\operatorname{dim} V_{\lambda}(\mathcal{A})=k$, then $f_{\mathcal{A}}(t)=(t-\lambda)^{k} h(t)$.

Part (2): Induction by s. If they are linearly independent, then there exist such vectors v_{j} that $v_{1}+\ldots+v_{s}=0$. Taking \mathcal{A} of it, we obtain $\lambda_{1} v_{1}+\ldots+\lambda_{s} v_{s}=0$. After that it remains to take the difference of this equality and the previous one multiplied by one of the non-zero numbers λ_{j}. After that we can use the induction hypothesis.

Corollary 1. If $f_{\mathcal{A}}$ has n different roots, then there exists the diagonal basis for \mathcal{A} consisting of its eigenvectors.

§ 3. Existence of a 1-dim or 2-dim invariant subspace for an operator in a real vector space

Suppose V is a real vector space, then its complexification is

$$
V(\mathbb{C}):=\{u+i v \mid u, v \in V\} .
$$

It is clear that $V(\mathbb{C})$ is also a vector space, $V(\mathbb{C}) \supset V=\{v+i \cdot 0 \mid v \in V\}$. It also clear that the basis of V is a basis for $V(\mathbb{C})$, i.e. $\operatorname{dim} V_{\mathbb{R}}=\operatorname{dim} V(\mathbb{C})_{\mathbb{C}}$.

Every linear operator in V can be uniqely extended to an operator in $V(\mathbb{C}): \mathcal{A}_{\mathbb{C}}(u+i v)=$ $\mathcal{A} u+i \cdot \mathcal{A} v$ (with the same matrix in the basis of V).

Theorem 3.1. For every linear operator in a real vector space there exist a 1-dim or a 2-dim invariant subspace.

Proof. If $f_{\mathcal{A}}$ has a real root, then \mathcal{A} has 1-dim invariant subspace.
Suppose now that $f_{\mathcal{A}}$ has a complex root $\lambda+\mu i$, and $u+i v \in V(\mathbb{C})$ is the corresponding eigenvector. That is, $\mathcal{A} u+i \mathcal{A} v=(\lambda+\mu i)(u+i v)$, which follows that

$$
\left\{\begin{array}{l}
\mathcal{A} u=\lambda u-\mu v \\
\mathcal{A} v=\mu u-\lambda v .
\end{array}\right.
$$

Thus, $\langle u, v\rangle$ is an invariant subspace.

§ 4. Linear operators in Euclidean and Hermitian spaces

4.1. Euclidean spaces. Let V be a real Euclidean space with an inner product (\cdot, \cdot). Then any operator in V naturally corresponds to a bilinear form $\varphi_{\mathcal{A}}(x, y)=(x, \mathcal{A} y)$.

In the orthonormal basis of V we have $\operatorname{Mat}\left(\varphi_{\mathcal{A}}\right)=\operatorname{Mat}(\mathcal{A}): \varphi_{\mathcal{A}}\left(e_{i}, e_{j}\right)=\left(e_{i}, \mathcal{A} e_{j}\right)=a_{i j}$. Recall that the basis of a Euclidean space V is orthonormal if and only if $\operatorname{Mat}((\cdot, \cdot))=E$ in this basis.

A map $\mathcal{A} \mapsto \varphi_{\mathcal{A}}$ is an isomorphism of the space $\mathcal{L}(V)$ of linear operators to the space of bilinear forms on V.

One can also define a transposed bilinear form $\varphi_{\mathcal{A}}^{T}(x, y)=\varphi_{\mathcal{A}}(y, x)$. Clearly, $\operatorname{Mat}\left(\varphi_{\mathcal{A}}^{T}\right)=$ $\operatorname{Mat}\left(\varphi_{\mathcal{A}}\right)^{T}$. We can also define the corresponding adjoint operator $\mathcal{A}^{*}:\left(x, \mathcal{A}^{*} y\right)=(y, \mathcal{A} x)=$ $(\mathcal{A} x, y)$. In the orthonormal basis $\operatorname{Mat}\left(\mathcal{A}^{*}\right)=\operatorname{Mat}(\mathcal{A})^{T}$.

Definition 4.1. A linear operator \mathcal{A} is called symmetric (or self-adjoint) if $\mathcal{A}^{*}=\mathcal{A}$ (i.e. $(x, \mathcal{A} y)=(y, \mathcal{A} x))$.

Definition 4.2. A linear operator \mathcal{A} is called skew-symmetric if $\mathcal{A}^{*}=-\mathcal{A}$.
Definition 4.3. A linear operator \mathcal{A} is called orthogonal if $\mathcal{A}^{*} \mathcal{A}=\mathcal{I}$ (i.e. \mathcal{A} preserves the inner product in $\left.V:(\mathcal{A} x, \mathcal{A} y)=\left(\mathcal{A}^{*} \mathcal{A} x, y\right)=(x, y)\right)$.

It is clear that non-degenerate operators correspond to non-degenerate matrices $(\operatorname{det} A \neq 0)$ and orthogonal operators correspond to orthogonal matrices $\left(A A^{T}=A^{T} A=E\right)$.

Thus, $\mathrm{GL}(n, \mathbb{R})$ and $\mathrm{O}(n, \mathbb{R})$ denote respectively the groups of non-degenerate and orthogonal operators on \mathbb{R}^{n}. One can also write $\mathrm{GL}(V)$ and $\mathrm{O}(V)$.
4.2. Hermitian spaces. Let V be a Hermitian space. Recall that in V (which is defined over $\mathbb{C})$ we have the inner product with following property: $(x, y)=\overline{(y, x)}$.

In this case we can also define a form $\varphi_{\mathcal{A}}$ and its conjugate form $\varphi_{\mathcal{A}}^{*}$ in the way similar to Euclidean spaces.

That is, $\left(x, \mathcal{A}^{*} y\right)=\overline{(y, \mathcal{A} x)}=(\mathcal{A} x, y)$.
Definition 4.4. An operator \mathcal{A} is called hermitian, skew-hermitian, and unitary, if $\mathcal{A}^{*}=\mathcal{A}$, $\mathcal{A}^{*}=-\mathcal{A}$, and $\mathcal{A}^{*}=\mathcal{A}^{-1}$, respectively .

§ 5. Orthonormal eigenbasis for a symmetric operator

An eigenbasis is a basis of eigenvectors.
Theorem 5.1. Let \mathcal{A} be either a symmetric, or a skew-symmetric, or an orthogonal operator in a Euclidean space V, and $U \subset V$ be its invariant subspace. Then U^{\perp} also is invariant for \mathcal{A}.

Proof. Let \mathcal{A} be a symmetric operator. If $x \in U, y \in U^{\perp}$, then $(x, \mathcal{A} y)=(\mathcal{A} x, y)=0$, since $\mathcal{A} x \in U, y \in U^{\perp}$. The same works for a skew-symmetric operator.

Suppose \mathcal{A} is orthogonal. Then $\left.\mathcal{A}\right|_{U}$ also is orthogonal and non-degenerate. Let $y \in U^{\perp}$ and $x \in U$. We need $\mathcal{A} y \in U^{\perp}$, i.e. $(x, \mathcal{A} y)=0$. But since $\left.\mathcal{A}\right|_{U}$ is non-degenerate, then there exists $z \in U$, such that $x=\mathcal{A} z$. Then $(x, \mathcal{A} y)=(\mathcal{A} z, \mathcal{A} y)=(z, y)=0$.

Theorem 5.2. For any symmetric operator in a Euclidean space, there exists an orthonormal eigenbasis.

Proof. Induction by $n=\operatorname{dim} V$. Case $n=1$ is trivial.
If $n=2$, then $A=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$. We have

$$
f_{\mathcal{A}}(t)=\operatorname{det}\left(\begin{array}{cc}
t-a & -b \\
-b & t-c
\end{array}\right)=t^{2}-(a+c) t+a c-b^{2}
$$

If $f_{\mathcal{A}}(t)=0$, then $t_{1,2}=\frac{a+c \pm \sqrt{(a-c)^{2}+4 b^{2}}}{2} \in \mathbb{R}$, which implies that there exists 1-dim invariant subspace U (generated by one of the eigenvectors), and in this case $V=U \oplus U^{\perp}=\left\langle e_{1}\right\rangle \oplus\left\langle e_{1}\right\rangle$ (see Theorem 5.1) is the sum of 1-dim invariant subspaces, where e_{1}, e_{2} are orthonormal eigenvectors.

For $n>2$ we choose an invariant (1- or 2-dim) subspace U (see Theorem 3.1) and $V=U \oplus U^{\perp}$ (see Theorem 5.1), where $\operatorname{dim} U, \operatorname{dim} U^{\perp}<n$ and we can use the induction hypothesis.

Corollary 2. If \mathcal{A} is a symmetric operator in V, then $V=\oplus_{\lambda} V_{\lambda}(\mathcal{A})$, where $V_{\lambda}(\mathcal{A}) \perp V_{\mu}(\mathcal{A})$ if $\lambda \neq \mu$.

Proof. Let $\left(e_{1}, \ldots, e_{n}\right)$ be an orthonormal eigenbasis from Theorem 5.2, $\mathcal{A} e_{j}=\lambda_{j} e_{j}$. Then $V_{\lambda}(\mathcal{A})=\left\langle e_{i} \mid \lambda_{i}=\lambda\right\rangle$ is orthogonal to all other $V_{\mu}(\mathcal{A})$.

Theorem 5.3. For any quadratic form $q(x)$ in a Euclidean space, there exists an orthonormal basis, where $q(x)=\lambda_{1} x_{1}^{2}+\ldots+\lambda_{n} x_{n}^{2}$, where λ_{j} are the eigenvalues of $\operatorname{Mat}(q)$ in any orthonormal basis and are defined up to permutation.

Proof. Indeed, $q(x)=(\mathcal{A} x, x)$ for a symmetric operator \mathcal{A}, which has the same matrix in some orthonormal basis as a form q. Then in any orthonormal basis $\operatorname{Mat}(q)=\operatorname{Mat}(\mathcal{A})$. It remains to use the eigenbasis from Theorem 5.2.

§ 6. Canonical form of an orthogonal operator

Theorem 6.1. For any orthogonal operator in a Euclidean space, there exists an orthonormal basis, where

$$
A=\left(\begin{array}{ccccc}
\Pi\left(\alpha_{1}\right) & & & & \\
& \ddots & & & \\
& & \Pi\left(\alpha_{k}\right) & \operatorname{diag}(-1, \ldots,-1) & \\
& & & & \operatorname{diag}(1, \ldots, 1)
\end{array}\right)
$$

where (see Exercise 1)

$$
\Pi(\alpha)=\left(\begin{array}{cc}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{array}\right)
$$

Proof. Induction by $n=\operatorname{dim} V$. Case $n=1$ is trivial: $A=(\pm 1)$.
Let $n=2$ and $\left(e_{1}, e_{2}\right)$ be an orthonormal basis. Suppose $\angle\left(\mathcal{A} e_{1}, e_{1}\right)=\alpha$. Since $\mathcal{A} e_{1} \perp \mathcal{A} e_{2}$, then either \mathcal{A} is a rotation on α (and $A=\Pi(\alpha))$ or \mathcal{A} is a reflection with respect to the bisector of the angle between e_{1} and $\mathcal{A} e_{1}$, and in this case $A=\operatorname{diag}(-1,1)$ in a suitable basis.

For $n>2$ we can choose again an invariant (1- or 2-dim) subspace U (see Theorem 3.1) and $V=U \oplus U^{\perp}$ (see Theorem 5.1), where $\operatorname{dim} U, \operatorname{dim} U^{\perp}<n$ and we can use the induction hypothesis.

\S 7. Orthonormal basis for a Hermitian and a unitary operator

Theorem 7.1. Eigenvalues of a hermitian operator are real numbers, and eigenvalues of a unitary operator have absolute values equal 1.

Proof. If \mathcal{A} is Hermitian, then $\lambda(e, e)=(\mathcal{A} e, e)=(e, \mathcal{A} e)=\bar{\lambda}(e, e)$, i.e. $\lambda=\bar{\lambda} \in \mathbb{R}$.
If \mathcal{A} is unitary, then $(\mathcal{A} e, \mathcal{A} e)=\lambda \bar{\lambda}(e, e)=(e, e)$, that is $|\lambda|=1$.
Theorem 7.2. For any Hermitian or unitary operator \mathcal{A} the subspace U^{\perp} is invariant if U is invariant.

For any Hermitian or unitary operator \mathcal{A} there exists an orthonormal eigenbasis.
Proof. Similar to the Euclidean case.

§ 8. Polar decomposition

Definition 8.1. An operator \mathcal{A} is called positive definite $(\mathcal{A}>0)$ if the corresponding quadratic form $q(x)=(\mathcal{A} x, x)>0$ (is positive definite). It is equivalent to the fact that $\lambda_{1}, \ldots, \lambda_{n}>0$.

Lemma 8.1. Prove that for any positive definite symmetric linear operator \mathcal{A} there is a unique positive definite symmetric linear operator \mathcal{B} such that $\mathcal{A}=\mathcal{B}^{2}$.

Proof. In some orthonormal basis $\operatorname{Mat}(\mathcal{A})=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. We take in this basis $\operatorname{Mat}(\mathcal{B})=\operatorname{diag}\left(\sqrt{\lambda}_{1}, \ldots, \sqrt{\lambda}_{n}\right)$. Since all $\sqrt{\lambda_{j}}>0$, then $\mathcal{B}>0$.

This operator \mathcal{B} is unique, since we can consider different eigenvalues μ_{1}, \ldots, μ_{m} for \mathcal{B}, and $V=V_{\mu_{1}}(\mathcal{B}) \oplus \ldots \oplus V_{\mu_{m}}(\mathcal{B})$, where the summands are pairwise orthogonal. The operator \mathcal{B} acts on each $V_{\mu}(\mathcal{B})$ as a multiplication by μ^{2}. Thus, $V_{\mu_{j}}(\mathcal{B})=V_{\mu_{j}^{2}}(\mathcal{A})$. It means that μ_{j} and $V_{\mu_{j}}(\mathcal{B})$ are uniquely determined.

Theorem 8.1. (Polar Decomposition.) Prove that each invertible operator \mathcal{A} in a Euclidean space can be decomposed in so called 'polar decomposition'

$$
\mathcal{A}=\mathcal{S}_{1} \mathcal{O}_{1}=\mathcal{O}_{2} \mathcal{S}_{2},
$$

where operators \mathcal{S}_{j} are unique positive definite symmetric operators and \mathcal{O}_{j} are unique orthogonal operators.

Proof. Let us consider $\mathcal{A} \mathcal{A}^{*}$. Clearly, it is symmetric and $\mathcal{A} \mathcal{A}^{*}>0$. Then there exists $\mathcal{S}>0$, such that $\mathcal{S}^{2}=\mathcal{A} \mathcal{A}^{*}$, and it remains to take $\mathcal{O}=\mathcal{S}^{-1} \mathcal{A}$.
(We can check: if $\mathcal{A}=\mathcal{S O}$, then $\mathcal{A} \mathcal{A}^{*}=\mathcal{S}\left(\mathcal{O O}^{*}\right) \mathcal{S}^{*}=\mathcal{S}^{2}$.)

§ 9. Exercises

1. Find the matrix of a linear operator of a 2-dimensional rotation on some angle α. We will denote it by $\Pi(\alpha)$.
2. Find the matrix of an operator of a rotation on an angle $\alpha=2 \pi / 3$ around the line $\ell=\left\{x \in \mathbb{R}^{3} \mid x_{1}=x_{2}=x_{3}\right\}$.
3. Suppose \mathcal{A} is a real operator. Is it true that $f_{\mathcal{A}}(t) \equiv f_{\mathcal{A}^{*}}(t)$?
4. Prove that if \mathcal{A} and \mathcal{B} are similar to each other (that is, there exists C, such that $\left.C^{-1} A C=B\right)$, then $f_{\mathcal{A}}(t)=f_{\mathcal{B}}(t)$.
5. What are the invariants of an operator \mathcal{A} with respect to changing of a basis? Find at least two of them.
