Linear Algebra

Lecture 7: Linear Operators I

Nikolay V. Bogachev

Moscow Institute of Physics and Technology
Department of Discrete Mathematics
Laboratory of Advanced Combinatorics and Network Applications

Linear Operators: Preliminaries

A linear operator in a vector space V is a linear map $\mathcal{A}: V \rightarrow V$.

The matrix of an operator \mathcal{A} in a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ is a matrix $A=\left(a_{i j}\right)$, where $\mathcal{A}\left(e_{j}\right)=\mathcal{A} e_{j}=\sum_{i}^{n} a_{i j} e_{i}$ (the columns of A).

That is, $\left(\mathcal{A} e_{1}, \ldots, \mathcal{A} e_{n}\right)=\left(e_{1}, \ldots, e_{n}\right) A$.
If $y=\mathcal{A} x$, then $Y=A X$ in the matrix form.

Transition of Coordinates

Let $\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)=\left(e_{1}, \ldots, e_{n}\right) C$. Then we have

$$
\begin{gathered}
\left(\mathcal{A l} e_{1}^{\prime}, \ldots, \mathcal{A} e_{n}^{\prime}\right)=\left(\mathcal{A} e_{1}, \ldots, \mathcal{A} e_{n}\right) C= \\
=\left(e_{1}, \ldots, e_{n}\right) A C=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) C^{-1} A C . \text { Thus, } \\
A^{\prime}=C^{-1} A C .
\end{gathered}
$$

Main question: how can we change a basis in such a way that the matrix has a simple form?

Invariant subspaces and eigenvectors are coming!

Invariant Subspaces

A subspace $U \subset V$ is invariant for $\mathcal{A}: V \rightarrow \mathrm{~V}$ if $\mathcal{A} U \subset U$, i.e. $\mathcal{A} u \in U$ for any $u \in U$.

The restriction $\left.\mathcal{A}\right|_{U}$ is an operator in U.
In the basis of V that agrees with U the matrix of \mathcal{A} has the following form:
$\left(\begin{array}{cc}A_{0} & B \\ 0 & C\end{array}\right)$, where $A_{0}=\operatorname{Mat}\left(\left.\mathcal{A}\right|_{U}\right)$

Direct Sum of Invariant Subspaces

If $V=V_{1} \oplus \cdots \oplus V_{k}$, where all V_{j} are invariant, then $A=\left(\begin{array}{ccc}A_{1} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_{k}\end{array}\right)$, where $A_{j}=\operatorname{Mat}\left(\left.\mathcal{A}\right|_{V_{j}}\right)$.

Simple example: $A=\operatorname{diag}\left(a_{1}, a_{2}\right)$. Here $\mathbb{R}^{2}=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle$.

Eigenvectors and Eigenvalues

A non-zero vector $v \in V$ is an eigenvector of \mathcal{A} if $\mathcal{A} v=\lambda v$ for some $\lambda \in \mathbb{F}$ (the field).

The corresponding number $\lambda \in \mathbb{F}$ is called an eigenvalue of \mathcal{A} corresponding to v.

In the basis of eigenvectors v_{1}, \ldots, v_{n} :

$$
A=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right) .
$$

Eigenvectors and Eigenvalues

If $\mathcal{A} v=\lambda v$ for some $\lambda \in \mathbb{F}$, then $\langle v\rangle$ is invariant subspace.

Geometrically, eigenvectors are exactly the directions, where the operator acts by stretching of a space by the corresponding eigenvalues.

Characteristic Polynomial

$\mathcal{A} v=\lambda v$ for some $\lambda \in \mathbb{F}$ iff the operator $\mathcal{A}-\lambda I$ is degenerate (singular), that is,

$$
\operatorname{det}(A-\lambda E)=0 .
$$

The characteristic polynomial of \mathcal{A} is

$$
f_{\mathcal{A}}(\lambda)=(-1)^{n} \operatorname{det}(A-\lambda E) .
$$

Eigenvalues are exactly the roots of the characteristic polynomial!

