Linear Algebra

Lecture 7: Linear Operators I

Nikolay V. Bogachev

Moscow Institute of Physics and Technology Department of Discrete Mathematics Laboratory of Advanced Combinatorics and Network Applications

Linear Operators: Preliminaries

A linear operator in a vector space *V* is a linear map $\mathcal{A} : V \to V$.

The matrix of an operator \mathcal{A} in a basis $\{e_1, \dots, e_n\}$ is a matrix $A = (a_{ij})$, where $\mathcal{A}(e_j) = \mathcal{A}e_j = \sum_{i=1}^{n} a_{ij}e_i$ (the columns of A). That is, $(\mathcal{A}e_1, \dots, \mathcal{A}e_n) = (e_1, \dots, e_n)A$.

If y = Ax, then Y = AX in the matrix form.

Transition of Coordinates

Let
$$(e'_1, ..., e'_n) = (e_1, ..., e_n)C$$
. Then we have
 $(\mathcal{A}e'_1, ..., \mathcal{A}e'_n) = (\mathcal{A}e_1, ..., \mathcal{A}e_n)C =$
 $= (e_1, ..., e_n)AC = (e'_1, ..., e'_n)C^{-1}AC$. Thus,
 $A' = C^{-1}AC$.

Main question: how can we change a basis in such a way that the matrix has a simple form? Invariant subspaces and eigenvectors are coming!

Invariant Subspaces

A subspace $U \subset V$ is invariant for $\mathcal{A} : V \to V$ if $\mathcal{A}U \subset U$, i.e. $\mathcal{A}u \in U$ for any $u \in U$.

The restriction $\mathcal{A}|_U$ is an operator in U.

In the basis of *V* that agrees with *U* the matrix of \mathcal{A} has the following form: $\begin{pmatrix} A_0 & B \\ 0 & C \end{pmatrix}$, where $A_0 = \operatorname{Mat}(\mathcal{A}|_U)$

Direct Sum of Invariant Subspaces

If $V = V_1 \bigoplus \cdots \bigoplus V_k$, where all V_i are

invariant, then $A = \begin{pmatrix} A_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & A_{\nu} \end{pmatrix}$, where

 $A_j = \operatorname{Mat}(\mathcal{A}|_{V_j}).$

Simple example: $A = \text{diag}(a_1, a_2)$. Here $\mathbb{R}^2 = \langle e_1 \rangle \bigoplus \langle e_2 \rangle$.

Eigenvectors and Eigenvalues

A non-zero vector $v \in V$ is an eigenvector of \mathcal{A} if $\mathcal{A}v = \lambda v$ for some $\lambda \in \mathbb{F}$ (the field).

The corresponding number $\lambda \in \mathbb{F}$ is called an eigenvalue of \mathcal{A} corresponding to v.

In the basis of eigenvectors $v_1, ..., v_n$: $A = \text{diag}(\lambda_1, ..., \lambda_n).$

Eigenvectors and Eigenvalues

If $Av = \lambda v$ for some $\lambda \in \mathbb{F}$, then $\langle v \rangle$ is invariant subspace.

Geometrically, eigenvectors are exactly the directions, where the operator acts by stretching of a space by the corresponding eigenvalues.

Characteristic Polynomial

 $\mathcal{A}v = \lambda v$ for some $\lambda \in \mathbb{F}$ iff the operator $\mathcal{A} - \lambda I$ is degenerate (singular), that is, $\det(A - \lambda E) = 0.$

The characteristic polynomial of \mathcal{A} is $f_{\mathcal{A}}(\lambda) = (-1)^n \det(A - \lambda E).$

Eigenvalues are exactly the roots of the characteristic polynomial!