Linear Algebra

Lecture 6: Convex Sets

Nikolay V. Bogachev

Moscow Institute of Physics and Technology
Department of Discrete Mathematics
Laboratory of Advanced Combinatorics and Network Applications

Convex Sets

Suppose \mathbb{A} is an affine space. $A B=[A, B]=\{\lambda A+(1-\lambda) B \mid 0 \leq \lambda \leq 1\}$ is a segment.
M is convex if:

Planes are convex sets.
If M_{1} and M_{2} are convex, then $M_{1} \cap M_{2}$ is also convex.

Convex Hull

A convex linear combination of points in \mathbb{A} is their barycentric combination with nonnegative coefficients.
For $\forall A_{0}, A_{1}, \ldots, A_{k} \in M$, where M is convex, M also contains every convex combination $\sum_{j=0}^{k} \lambda_{j} A_{j}$.
For any $M \subset \mathbb{A}$, the set $\operatorname{conv}(M)$ of all convex combinations of points in M is also convex. It is a convex hull of M.

Simplex

A convex hull of a set of affinely independent points $A_{0}, A_{1}, \ldots, A_{k} \in \mathbb{A}$ is a k dim simplex or a k-simplex.
0 -simplex is a point, 1 -simplex is a segment, 2 -simplex is a triangle, etc.

Neighborhoods and Interior Points

An ε-neighborhood of $A \in \mathbb{E}^{n}$ is an open ball $B(A, \varepsilon)=\left\{X \in \mathbb{E}^{n} \mid \rho(A, X)<\varepsilon\right\}$.
$A \in M$ is an interior point of the set M if $B(A, \varepsilon) \subset M$ for some $\varepsilon>0$.

A set $\operatorname{int}(M)$ of all interior points $M \subset \mathbb{E}^{n}$ is called the interior of M.

If $\operatorname{int}(M) \neq \varnothing$ for a convex set M, then M is a convex body.

Convex Body

Suppose M is convex. Then

$$
\operatorname{int}(\mathrm{M}) \neq \emptyset \Leftrightarrow \operatorname{aff}(M)=\mathbb{E}^{n} .
$$

Proof: If aff $(M)=\mathbb{E}^{n}$, then M has $n+1$ affinely independent points. It implies that M contains a simplex and a small ball inside.

The converse is obvious.

Neighborhoods and Interior Points

Suppose $P \in \operatorname{int}(M), Q \in M$, and M is convex.
Then for any $X \in(P, Q)$, we have $X \in \operatorname{int}(M)$.
Proof: If $P \in \operatorname{int}(M)$ with a ball $B(P, \varepsilon)$, and $\overrightarrow{\boldsymbol{Q X}}=\lambda \overrightarrow{\boldsymbol{Q P}}$, then $H_{Q}^{\lambda}(B(P, \varepsilon))$ is the $(\lambda \varepsilon)$-neighborhood of $X \in(P, Q)$.

Hyperplanes and Half-Spaces

Suppose f is affinely-linear function on \mathbb{E}^{n}. Then we define a hyperplane

$$
\begin{aligned}
& H_{f}:=\left\{x \in \mathbb{E}^{n} \mid f(x)=0\right\} \\
& \text { and half-spaces } \\
& H_{f}^{+}:=\left\{x \in \mathbb{E}^{n} \mid f(x) \geq 0\right\} \\
& H_{f}^{-}:=\left\{x \in \mathbb{E}^{n} \mid f(x) \leq 0\right\} .
\end{aligned}
$$

Hyperplanes and Half-Spaces

Boundary points of M are the points from $\operatorname{clos}(M) \backslash \operatorname{int}(M)$. The boundary of M is $\partial M=\operatorname{clos}(M) \backslash \operatorname{int}(M)$.
H_{f} is supporting for a closed convex body M if $M \subset H_{f}^{+}$and $\exists A \in M$, s.t. $A \in H_{f}$.

Supporting Hyperplanes

H that passes through a point $X \in \partial M$ of a closed convex body M, is a supporting hyperplane iff $H \cap \operatorname{int}(M)=\varnothing$.

Proof: If $H \cap \operatorname{int}(\mathbb{M}) \neq \varnothing$, then points of $\operatorname{int}(M)$ Kie in both sides of H. Conversely, if points of M lie in both sjedes of H, then $\exists(A, B)$, connecting $A / E_{H^{+}} \cap_{H} \operatorname{int}(M)$ and $B \in H^{-} \cap \operatorname{int}_{H}(M)$, since any $X \in M$ is a limit point for $\operatorname{int}(M)$. Clearly, $(A, B) \cap H \neq \varnothing$.

The Separation Theorem

For every point $X \in \partial M$ for a closed convex body $M \subset \mathbb{E}^{n}$ there exists a supporting hyperplane $H \ni X$.

Proof:

Let us prove by induction on $k \leq n-1$, that there exists a k-dimensional plane through X that does not intersect int(M).

The Separation Theorem

For $k=0$ this plane is X. Assume that we have a $(k-1)$-dim plane P with the required conditions.

Pick any $(k+1)$-dim space S^{\prime}, containing P and $A_{0} \in \operatorname{int}(M)$. Let us find our k-dim plane.

The Separation Theorem

$M^{\prime}=M \cap S^{\prime}$ is a convex body in S^{\prime}. Clearly, $\operatorname{int}(M) \cap S^{\prime} \subset \operatorname{int}\left(M^{\prime}\right)$. Conversely, $\forall B \in \operatorname{int}\left(M^{\prime}\right)$ is a point of $\left(A_{0}, B_{0}\right)$, where $B_{0} \in M^{\prime} \subset M$. Hence, $B \in \operatorname{int}(M)$.

The Separation Theorem

Hence, $B \in \operatorname{int}(M)$. Therefore,

$$
\operatorname{int}\left(M^{\prime}\right)=\operatorname{int}(M) \cap S^{\prime} .
$$

It follows that $P \cap \operatorname{int}\left(M^{\prime}\right)=\varnothing$. Then it remains to prove that $S^{\prime} \supset$ a supporting hyperplane of M^{\prime} that contains P.

We change the notation:

$$
S^{\prime}=S, \quad M^{\prime}=M, \quad k+1=n .
$$

The Separation Theorem

Let P be a $(n-2)$-dim plane through the point $X \in \partial M$, such that $P \cap \operatorname{int}(M) \neq \varnothing$.

If a hyperplane $H \supset \mathrm{P}$, then P divides H into
2 half-spaces H^{\prime} and $H^{\prime \prime}$. If $H^{\prime} \cap \operatorname{int}(M)=\varnothing$ and $H^{\prime \prime} \cap \operatorname{int}(M)=\varnothing$, we are done.

Since H^{\prime} and $H^{\prime \prime}$ can not intersect $\operatorname{int}(M)$ simultaneously, we may assume that H^{\prime} intersects int (M) while $H^{\prime \prime}$ does not.

The Separation Theorem

Let us rotate H around P, clockwise.

