Linear Algebra

Lecture 6: Convex Polyhedra II

Nikolay V. Bogachev

Moscow Institute of Physics and Technology
Department of Discrete Mathematics
Laboratory of Advanced Combinatorics and Network Applications

Convex Polyhedron

A convex polyhedron (or a convex polytope) is an intersection of finitely many half-spaces (sometimes, nonempty interior is required).

Parallelepiped

Simplex

Minkowski-Weyl Theorem

M is a convex polyhedron iff M is a convex hull of finitely many points.

$$
M=\operatorname{conv}\{\text { vertices of } M\} ?
$$

Faces of Polyhedra

A face of a convex polyhedron M is a nonempty intersection of M with some of its supporting hyperplanes.

- A 0-dim face is called a vertex
- A 1-dim face, an edge
- A 2-dim face, a plane
- An $(n-1)$-dim face, a hyperface or a facet

Faces of Polyhedra

Every face F of M is of the form

$$
F=M \cap\left(\bigcap_{j \in J} H_{f_{j}}\right) \text {, where } J \subset\{1, \ldots, m\}
$$

Since a convex polyhedron is determined by a system of linear inequalities, its faces can be obtained by replacing some of these inequalities with equalities.

Example

A parallelepiped $\left\{x \mid 0 \leq x_{j} \leq 1, \forall j\right\}$ has the faces obtained by setting some of x_{k} to 0 or 1 .

Its vertices are points $\left\{x \mid x_{j}=0\right.$ or $\left.1, \forall j\right\}$.

Vertices as Extreme Points

The extreme points of a convex polyhedron M are exactly its vertices.

Proof: If a point $X \in \partial M$ is an interior point of an interval in M, then a supporting hyperplane through X contains this interval. Hence X is not a vertex of M.

Conversely, if X is not a vertex of M, then $X \in \operatorname{int}(F)$ of $\operatorname{dim} F>0$, i.e. is not extreme.

Linear Programming

The maximum of an affine-linear function on a bounded convex polyhedron M is attained at a vertex.
Proof: Every $X \in M$ is of the form:

$$
X=\sum_{j=1}^{k} \lambda_{j} A_{j}, \quad \sum_{j=1}^{k} \lambda_{j}=1, \quad \lambda_{j} \geq 0 .
$$

Then $f(X)=\sum_{j=1}^{k} \lambda_{j} f\left(A_{j}\right) \leq \max _{j} f\left(A_{j}\right)$.

The Maximum Profit Problem

A company processes resources R_{1}, \ldots, R_{m} of amounts b_{1}, \ldots, b_{m}, respectively, and wants to produce products P_{1}, \ldots, P_{n} of amounts x_{1}, \ldots, x_{n}, respectively.

Let $a_{i j}$ be the amount of R_{i} needed to produce a unit of P_{j}. Clearly, the following inequalities should hold:

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad x_{j} \geq 0, \quad i=1, \ldots, m
$$

The Maximum Profit Problem

They determine the convex polyhedron M in the n-space with coordinates x_{1}, \ldots, x_{n}.

To maximize the profit, one needs to find the point $x_{1}, \ldots, x_{n} \in M$, where the function $\sum_{j}^{n} c_{j} x_{j}$ (the total selling price) is maximal.

The basic problem of linear programming naturally arises here.

The Transportation Problem

Suppliers A_{1}, \ldots, A_{m} carry the amounts a_{1}, \ldots, a_{m}, respectively, of a certain product.

Customers B_{1}, \ldots, B_{n} need the amounts
b_{1}, \ldots, b_{n}, respectively, of the same product.
It is also given that $\sum_{i}^{m} a_{i}=\sum_{j}^{n} b_{j}$. Let $x_{i j}$ be the amount of product that is transported from A_{i} to B_{j} and $c_{i j}$, the cost to deliver a unit of product from A_{i} to B_{j}.

The Transportation Problem

The following conditions must hold:

$$
\sum_{j=1}^{n} x_{i j}=a_{i}, \sum_{i=1}^{m} x_{i j}=b_{j}, x_{i j} \geq 0 .
$$

They define a convex polyhedron in the (mn)-space with coordinates $x_{i j}$.

The problem is to minimize the function $\sum_{i, j} c_{i j} x_{i j}$ on this polyhedron.

The Simplex Method

Sliding by the edges of M in the direction of the increase of f, while possible. The movement ends at a vertex of the maximum.

