Linear Algebra

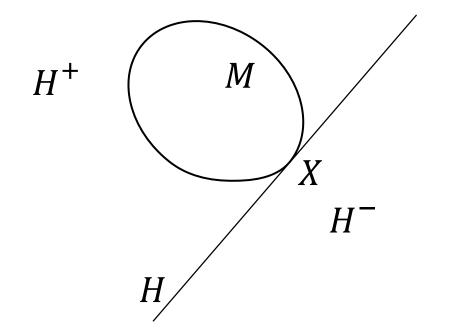
Lecture 6: Convex Polyhedra I

Nikolay V. Bogachev

Moscow Institute of Physics and Technology Department of Discrete Mathematics Laboratory of Advanced Combinatorics and Network Applications

The Separation Theorem

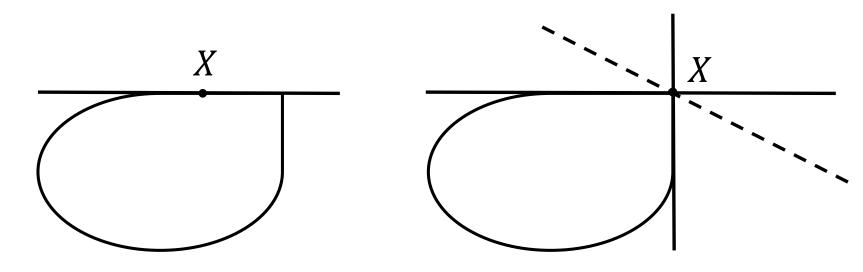
For every point $X \in \partial M$ for a closed convex body $M \subset \mathbb{E}^n$ there exists a supporting hyperplane $H \ni X$.



The Separation Theorem

We proved that any plane *P* trough $X \in \partial M$, s.t. $P \cap int(M) = \emptyset$, is contained in a supporting hyperplane.

 $X \in \partial M$ can belong to either a unique or infinitely many supporting hyperplanes.



Intersection of Half-Spaces

Every closed convex set is an intersection of (perhaps infinitely many) half-spaces.

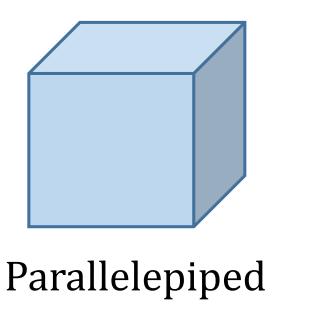
Proof: $H_f = H_f^+ \cap H_f^-$, it implies that any plane is an intersection of half-spaces.

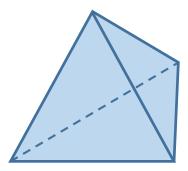
Thus, it remains to prove the theorem for a convex body.

Every convex body is the intersection of half-spaces of its supporting hyperplanes.

Polyhedron

A convex polyhedron is an intersection of finitely many half-spaces (sometimes, nonempty interior is required).





Simplex

Extreme Points

A point $A \in M$ for a convex M is extreme if it is not an interior point of any interval in M.

Theorem. A bounded closed convex set M is the convex hull of the set E(M) of its extreme points. **Proof:** Let $\widetilde{M} = \operatorname{conv} E(M)$. Clearly, $\widetilde{M} \subset M$.

We will prove by induction on $n = \dim \mathbb{E}^n$ that $M \subset \widetilde{M}$. Assume that $n > 0, A \in M$, and M is a convex body.

Extreme Points

Proof: Assume that n > 0, $A \in M$, and M is a convex body. We'll prove that $A \in M$. **Case 1:** $A \in \partial M$. Taking a supporting hyperplane $H \ni A$, we obtain that a bounded closed convex set $H \cap M = \operatorname{conv} E(H \cap M)$ and $A \in \widetilde{M}$.

Case 2: $A \in \text{int } M$. Then $A \in (X, Y)$, where $X, Y \in \partial M$, and therefore, $X, Y \in \widetilde{M}$. Thus, $A \in \widetilde{M}$.

Minkowski-Weyl Theorem

M is a convex polyhedron iff *M* is a convex hull of finitely many points.

Proof: Let $M = \bigcap_{j=1}^{m} H_{f_j}^+$ be a convex polyhedron. Let us prove that $\forall X \in E(M)$ is the only point in the intersection of some of $H_{f_1}^+, \dots, H_{f_m}^+$.

This will imply that

 $\#(E(M)) < +\infty$, and $M = \operatorname{conv}(E(M))$.

Minkowski-Weyl Theorem Proof: Let $A \in E(M)$. Define $J = \{j \mid f_j(A) = 0\} \subset \{1, ..., m\},$ $P = \{X \in \mathbb{E}^n \mid f_j(X) = 0, j \in J\}.$

Since $f_k(A) > 0$ for $k \notin J$, we see that $A \in int(M \cap P)$ in the space *P*.

But $A \in E(M)$, hence $A \in E(M \cap P)$. Thus, dim P = 0, that is, $P = \{A\}$.

Minkowski-Weyl Theorem **Proof:** Let $M = \operatorname{conv}\{A_1, \dots, A_k\}$. We assume that $aff(M) = \mathbb{E}^n$. Consider k $M^* = \{ f \mid f(A_j) \ge 0 \text{ for } 1 \le j \le k, \sum f(A_j) = 1 \}$ Any *f* is uniquely determined by $f(A_i)$ for $j = 1, \dots, k$. Since $|f(A_i)| \le 1$, then M^* is bounded and $M^* = \operatorname{conv}\{f_1, \dots, f_m\}$. Thus, $M = \{ X \in \mathbb{E}^n \mid f(X) \ge 0 \ \forall f \in M^* \} =$ $= \{ X \in \mathbb{E}^n \mid f_k(X) \ge 0 \ \forall k = 1, \dots, m \}.$