LINEAR AlgEBRA
 Lecture 5: Hermitian Spaces

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Sesquilinear Form

A complex vector space V is a space over \mathbb{C}.

A sesquilinear form is a function $\alpha: V \times V \rightarrow \mathbb{C}$, that is linear with respect to the 1st argument and antilinear with respect to the 2 nd , that is,

$$
\begin{aligned}
& \alpha\left(\lambda_{1} x_{1}+\lambda_{2} x_{2}, \mu_{1} y_{1}+\mu_{2} y_{2}\right)= \\
& =\bar{\lambda}_{1} \mu_{1} \alpha\left(x_{1}, y_{1}\right)+\bar{\lambda}_{1} \mu_{2} \alpha\left(x_{1}, y_{2}\right)+ \\
& +\bar{\lambda}_{2} \mu_{1} \alpha\left(x_{2}, y_{1}\right)+\bar{\lambda}_{2} \mu_{2} \alpha\left(x_{2}, y_{2}\right) .
\end{aligned}
$$

Matrices of Sesquilinear Forms

Let $V=\left\langle e_{1}, \ldots, e_{n}\right\rangle$ and $a_{i j}=\alpha\left(e_{i}, e_{j}\right)$.
Then $\alpha(x, y)=\sum_{i, j=1}^{n} a_{i j} \overline{x_{i}} y_{j}$.
The transition between bases:
$\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)=\left(e_{1}, \ldots, e_{n}\right) C$ and
$A^{\prime}=C^{*} A C$, where $C^{*}=\bar{C}^{T}, A=\left(a_{i j}\right)$.
α is non-degenerate if
$\operatorname{Ker}(\alpha):=\{y \mid \alpha(x, y)=0 \forall x \in V\}=0$.

Hermitian and Quadratic Forms

A sesquilinear form α is called hermitian
if $\alpha(x, y)=\overline{\alpha(y, x)} \Leftrightarrow A^{*}=A$.
A quadratic form $q(x)=\alpha(x, x)$ is
positive definite if $q(x)>0$ for any $x \neq 0$.
Similar theory of orthogonalization methods as for $\mathbb{k}=\mathbb{R}$!!

Normal form:

$$
\begin{aligned}
& \alpha(x, y)=\bar{x}_{1} y_{1}+\ldots+\bar{x}_{k} y_{k}-\bar{x}_{k+1} y_{k+1}-\bar{x}_{k+l} y_{k+l}, \\
& q(x)=\left|x_{1}\right|^{2}+\ldots+\left|x_{k}\right|^{2}-\left|x_{k+1}\right|^{2}-\ldots-\left|x_{k+l}\right|^{2} .
\end{aligned}
$$

Hermitian Vector Space

A sesquilinear form α is called hermitian if $\alpha(x, y)=\overline{\alpha(y, x)} \Leftrightarrow A^{*}=A$.

A complex vector space V with a positive definite hermitian form is Hermitian.

This form is also called an inner product and is denoted by (\cdot, \cdot).

Some Examples

\mathbb{C}^{n} with the standard Hermitian inner product $(x, y)=\bar{x}_{1} y_{1}+\ldots+\bar{x}_{n} y_{n}$.

The space $C[a, b]$ with

$$
(f, g)=\int_{a}^{b} \overline{f(x)} g(x) d x .
$$

Cauchy-Bunyakowski-Schwarz Inequality:

$$
|(x, y)| \leq\|x\| \cdot\|y\| .
$$

Some Facts

Inner product allows to calculate lengths and distances:
$\|x\|=\sqrt{(x, x)}, \rho(x, y)=\sqrt{(x-y, x-y)}$.

If $(C x, C y)=(x, y)$ then $C^{*} C=E$. Such
C form the group $\mathrm{U}(n, \mathbb{C})$ of unitary matrices (with $|\operatorname{det} C|=1$).

