LINEAR ALGEBRA

Lecture 5: Hermitian Spaces

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Sesquilinear Form

A complex vector space V is a space over \mathbb{C} .

A sesquilinear form is a function $\alpha \colon V \times V \to \mathbb{C}$, that is linear with respect to the 1st argument and antilinear with respect to the 2nd, that is. $\alpha(\lambda_1 x_1 + \lambda_2 x_2, \mu_1 y_1 + \mu_2 y_2) =$ $= \overline{\lambda}_1 \mu_1 \alpha(x_1, y_1) + \overline{\lambda}_1 \mu_2 \alpha(x_1, y_2) +$ $+\overline{\lambda}_2\mu_1\alpha(x_2,y_1)+\overline{\lambda}_2\mu_2\alpha(x_2,y_2).$

Matrices of Sesquilinear Forms

Let
$$V = \langle e_1, \dots, e_n \rangle$$
 and $a_{ij} = \alpha(e_i, e_j)$.
Then $\alpha(x, y) = \sum_{i,j=1}^n a_{ij} \overline{x_i} y_j$.

The transition between bases: $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$ and $A' = C^*AC$, where $C^* = \overline{C}^T$, $A = (a_{ij})$.

 α is non-degenerate if $\operatorname{Ker}(\alpha) := \{ y \mid \alpha(x, y) = 0 \ \forall x \in V \} = 0.$

Hermitian and Quadratic Forms

A sesquilinear form α is called hermitian if $\alpha(x, y) = \overline{\alpha(y, x)} \Leftrightarrow A^* = A$.

A quadratic form $q(x) = \alpha(x, x)$ is positive definite if q(x) > 0 for any $x \neq 0$.

Similar theory of orthogonalization methods as for $\mathbb{k} = \mathbb{R} \parallel$

Normal form:

$$\begin{split} &\alpha(x,y) = \overline{x}_1 y_1 + \ldots + \overline{x}_k y_k - \overline{x}_{k+1} y_{k+1} - \overline{x}_{k+l} y_{k+l}, \\ &q(x) = |x_1|^2 + \ldots + |x_k|^2 - |x_{k+1}|^2 - \ldots - |x_{k+l}|^2. \end{split}$$

Hermitian Vector Space

A sesquilinear form α is called hermitian if $\alpha(x, y) = \overline{\alpha(y, x)} \Leftrightarrow A^* = A$.

A complex vector space *V* with a positive definite hermitian form is Hermitian.

This form is also called an inner product and is denoted by (\cdot, \cdot) .

Some Examples

 \mathbb{C}^n with the standard Hermitian inner product $(x, y) = \overline{x}_1 y_1 + ... + \overline{x}_n y_n$. The space C[a, b] with

$$(f,g) = \int_{a}^{b} \overline{f(x)}g(x)dx.$$

Cauchy-Bunyakowski-Schwarz Inequality:

 $|(x,y)| \le ||x|| \cdot ||y||.$

Some Facts

Inner product allows to calculate lengths and distances:

 $\|x\|=\sqrt{(x,x)},\;\rho(x,y)=\sqrt{(x-y,x-y)}.$

If (Cx, Cy) = (x, y) then $C^*C = E$. Such *C* form the group $U(n, \mathbb{C})$ of unitary matrices (with $|\det C| = 1$).