Linear Algebra

Lecture 3: Exercises on Affine Geometry and Bilinear Forms

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Problem: Plane

$P \subset \mathbb{A}$ is a plane, iff for any $A, B \in P$ the line $A B$ also lies in P.

Problem: Convex Combinations

For any $A_{0}, A_{1}, \ldots, A_{k} \in M$, where M is convex, M also contains every convex combination $\sum \lambda_{j} A_{j}$.

Convex Hull

For any $M \subset \mathbb{A}$, the set $\operatorname{conv}(M)$ of all convex combinations of points in M is convex.

Linear Functions on Polynomials

Prove that functions $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{n}$ defined as $\varphi_{k}(p)=p\left(x_{k}\right)$, form a basis in $\mathbb{k}^{*}[x]_{n}$, where $x_{0}, x_{1}, \ldots, x_{n} \in \mathbb{k}$.

Problem: Orthogonal Group

A subgroup of $\mathrm{GL}(n, \mathbb{R})$ that preserves the standard inner product is $\mathrm{O}(n, \mathbb{R})$:

$$
\mathrm{O}(n, \mathbb{R})=\{A \in \mathrm{GL}(n, \mathbb{R}) \mid(A x, A y)=(x, y)\}
$$

Problem: General Affine Group

$$
\operatorname{Aff}(\mathbb{A})=T(\mathbb{A}) \rtimes \mathrm{GL}(V)
$$

Problem: Isom($\left.\mathbb{E}^{n}\right)$

$$
\operatorname{Isom}\left(\mathbb{E}^{n}\right)=T\left(\mathbb{E}^{n}\right) \rtimes \mathrm{O}(n, \mathbb{R})
$$

Problem: $\operatorname{Isom}\left(\mathbb{E}^{n}\right)$ and Reflections

$\operatorname{Isom}\left(\mathbb{E}^{n}\right)$ is generated by reflections.

Orthogonal Complement

If α is non-degenerate, then

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U \text { and }\left(U^{\perp}\right)^{\perp}=U .
$$

