LINEAR ALGEBRA

Lecture 3: Exercises on Affine Geometry and Bilinear Forms

Nikolay V. Bogachev

Moscow INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Problem: Plane

$P \subset \mathbb{A}$ is a plane, iff for any $A, B \in P$ the line AB also lies in P.

Problem: Convex Combinations

For any $A_0, A_1, \ldots, A_k \in M$, where M is convex, M also contains every convex combination $\sum \lambda_j A_j$.

Convex Hull

For any $M \subset A$, the set conv(M) of all convex combinations of points in M is convex.

Linear Functions on Polynomials

Prove that functions $\varphi_0, \varphi_1, \dots, \varphi_n$ defined as $\varphi_k(p) = p(x_k)$, form a basis in $\Bbbk^*[x]_n$, where $x_0, x_1, \dots, x_n \in \Bbbk$.

Problem: Orthogonal Group

A subgroup of $GL(n, \mathbb{R})$ that preserves the standard inner product is $O(n, \mathbb{R})$:

 $\mathcal{O}(n,\mathbb{R})=\{A\in \mathrm{GL}(n,\mathbb{R})\mid (Ax,Ay)=(x,y)\}$

Problem: General Affine Group

 $\operatorname{Aff}(\mathbb{A}) = T(\mathbb{A}) \rtimes \operatorname{GL}(V)$

Problem: $\operatorname{Isom}(\mathbb{E}^n)$

 $\operatorname{Isom}(\mathbb{E}^n) = T(\mathbb{E}^n) \rtimes \operatorname{O}(n,\mathbb{R})$

Problem: $Isom(\mathbb{E}^n)$ and Reflections

 $\operatorname{Isom}(\mathbb{E}^n)$ is generated by reflections.

Orthogonal Complement

If α is non-degenerate, then

 $\dim U^{\perp} = \dim V - \dim U and (U^{\perp})^{\perp} = U.$