LINEAR AlgEBRA
 Lecture 5: Euclidean Vector Spaces

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Euclidean Vector Space

A real vector space V equipped with a positive definite symmetric bilinear form is called Euclidean.

This bilinear form is called an inner product and is denoted by (\cdot, \cdot).

It allows to calculate lengths and angles:

$$
\|x\|=\sqrt{(x, x)}, \cos \angle(x, y)=\frac{(x, y)}{\|x\| \cdot\|y\|}
$$

Some Examples

\mathbb{R}^{n} with the standard Euclidean inner product $(x, y)=x_{1} y_{1}+\ldots+x_{n} y_{n}$.

The space $C[a, b]$ with

$$
(f, g)=\int_{a}^{b} f(x) g(x) d x
$$

Cauchy-Bunyakowski-Schwarz Inequality:

$$
|(x, y)| \leq\|x\| \cdot\|y\| .
$$

Gram Matrix

The Gram matrix of a system of vectors:

$$
G\left(v_{1}, \ldots, v_{k}\right)=\left(\begin{array}{cccc}
\left(v_{1}, v_{1}\right) & \left(v_{1}, v_{2}\right) & \ldots & \left(v_{1}, v_{k}\right) \\
\left(v_{2}, v_{1}\right) & \left(v_{2}, v_{2}\right) & \ldots & \left(v_{2}, v_{k}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\left(v_{k}, v_{1}\right) & \left(v_{k}, v_{2}\right) & \ldots & \left(v_{k}, v_{k}\right)
\end{array}\right)
$$

If $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V, then

$$
G\left(e_{1}, \ldots, e_{n}\right)=\operatorname{Mat}((\cdot, \cdot))
$$

Gram Matrix: Theorem

For any v_{1}, \ldots, v_{k} in a Euclidean space V $\operatorname{det} G\left(v_{1}, \ldots, v_{k}\right) \geq 0$ and $=0$ iff v_{1}, \ldots, v_{k} are linearly dependent.

Proof: $\sum_{j=1}^{n} \lambda_{j} a_{j}=0 \Rightarrow$ for all $k=1, \ldots, n$
$\sum_{j=1}^{n} \lambda_{j}\left(a_{j}, a_{k}\right)=0 \Rightarrow \operatorname{det} G\left(v_{1}, \ldots, v_{k}\right)=0$.
If v_{1}, \ldots, v_{k} are linearly independent, then they form a basis of a subspace U in V. Then $\operatorname{Mat}\left(\left.(\cdot, \cdot)\right|_{U}\right)=G\left(v_{1}, \ldots, v_{k}\right)>0$.

Orthonormal Basis

A basis $\left\{e_{1}, \ldots, e_{n}\right\}$ is called orthonormal if $(x, y)=x_{1} y_{1}+\ldots+x_{n} y_{n}$. It is equivalent to any of the following conditions:

$$
\cdot(x, x)=x_{1}^{2}+\ldots+x_{n}^{2}
$$

$$
\cdot G\left(e_{1}, \ldots, e_{n}\right)=E(=\operatorname{Mat}(\operatorname{Id}))
$$

$$
\cdot\left(e_{i}, e_{j}\right)=\delta_{i j}
$$

$$
\cdot\left(e_{i}, e_{j}\right)=0 \text { and }\left\|e_{k}\right\|=1
$$

Transition Between Orthonormal Bases

Suppose $\left\{e_{1}, \ldots, e_{n}\right\}$ is orthonormal and

$$
\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)=\left(e_{1}, \ldots, e_{n}\right) C .
$$

Then the matrix of (\cdot, \cdot) in $\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ is

$$
C^{T} E C=C^{T} C .
$$

Therefore, $\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$ is orthonormal, iff

$$
C^{T} C=E .
$$

Orthogonal Matrices

The matrices C, s.t. $C^{T} C=E$, are called orthogonal. It implies that $\operatorname{det} C= \pm 1$. The definition is equivalent to any of the following conditions:

- $C^{-1}=C^{T}$
- $C C^{T}=E$
- $(C x, C y)=(x, y)$ for any $x, y \in V$
- rows (and columns) of C are pairwise orthogonal and have length 1 .

Orthogonal Projection and Component

Suppose $U \subset V$, then $\left.(\cdot, \cdot)\right|_{U}>0$.

It implies that $V=U \oplus U^{\perp}$, which follows that any $x \in V$ can be uniquely written as
$x=\operatorname{pr}_{U} x+$ ort $_{U} x, \quad \operatorname{pr}_{U} x \in U$, ort $_{U} x \in U^{\perp}$.
$\operatorname{pr}_{U} x$ is the orthogonal projection of x on(to) U, ort $_{U} x$ is the orthogonal component of x with respect to U.

Orthogonal Projection and Component

Suppose $\left\{e_{1}, \ldots, e_{k}\right\}$ is an orthogonal basis of $U \subset V$. Then

$$
\operatorname{pr}_{U} x=\sum_{j=1}^{k} \frac{\left(x, e_{j}\right)}{\left(e_{j}, e_{j}\right)} e_{j} .
$$

Clearly,

$$
\operatorname{ort}_{U} x=x-\operatorname{pr}_{U} x=x-\sum_{j=1}^{k} \frac{\left(x, e_{j}\right)}{\left(e_{j}, e_{j}\right)} e_{j} .
$$

