LINEAR AlGEBRA
 Lecture 2: Euclidean Affine Geometry

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Affine Hull

Suppose $M \subset \mathbb{A}$ and $A_{0} \in M$. Then a plane

$$
P=A_{0}+\left\langle\overline{A_{0} X} \mid X \in M\right\rangle
$$

is the smallest plane that contains M.
This plane is called an affine hull of M and is denoted by aff (M).

Euclidean Affine Space \mathbb{E}^{n}

Euclidean Affine Space \mathbb{E}^{n} is an affine space over $V=\mathbb{R}^{n}$ equipped with a standard Euclidean inner product
$(\cdot, \cdot): V \times V \rightarrow \mathbb{R},(u, v)=u_{1} v_{1}+\ldots+u_{n} v_{n}$ and a metric (and a norm) on \mathbb{E}^{n} :

$$
\rho(x, y):=\sqrt{(x-y, x-y)}:=\|x-y\| .
$$

Euclidean Space: Facts

(F1) $\rho(A, B) \geq 0$, and

$$
\rho(A, B)=0 \Leftrightarrow A=B
$$

(F2) Pythagorean Theorem: If $u \perp v$, that is, $(u, v)=0$, then $w=u-v$ satisfies the formula: $\|w\|^{2}=\|u\|^{2}+\|v\|^{2}$.
(F3) Cauchy-Bunyakovsky-Schwarz Inequality: $|(u, v)| \leq\|u\| \cdot\|v\|$
(F4) Triangle Inequality:

$$
\rho(A, B)+\rho(B, C) \geq \rho(A, C)
$$

Euclidean Space: Facts

$$
\begin{aligned}
& {[A, B]:=\{X \mid \overline{A X}=\lambda \overline{A B}, 0 \leq \lambda \leq 1\} \text { is }} \\
& \text { called a segment (or closed interval) }
\end{aligned}
$$

(F5) For any nonzero $u, v \in \mathbb{R}^{n}$ there exist vectors $\operatorname{proj}_{u} v$ and ort ${ }_{u} v$, such that $\operatorname{ort}_{u} v \perp u, \operatorname{proj}_{u} v$ is proportional to u, and $v=\operatorname{proj}_{u} v+$ ort $_{u} v$.

$$
\begin{aligned}
& \text { (F6) } \rho(A, B)+\rho(B, C)=\rho(A, C) \text { iff } \\
& B \in[A, C]
\end{aligned}
$$

Euclidean Space: Facts

$$
\begin{aligned}
& \text { (F1) } \rho(A, B) \geq 0 \text {, and } \\
& \rho(A, B)=0 \Leftrightarrow A=B
\end{aligned}
$$

Euclidean Space: Facts

(F2) Pythagorean Theorem:
If $u \perp v$, that is, $(u, v)=0$, then $w=u-v$
satisfies the formula: $\|w\|^{2}=\|u\|^{2}+\|v\|^{2}$.

Euclidean Space: Facts

(F3) Cauchy-Bunyakovsky-Schwarz Inequality: $|(u, v)| \leq\|u\| \cdot\|v\|$

Euclidean Space: Facts

$$
\text { (F4) } \rho(A, B)+\rho(B, C) \geq \rho(A, C)
$$

Euclidean Space: Facts

(F5) For any nonzero $u, v \in \mathbb{R}^{n}$ there exist vectors $\operatorname{proj}_{u} v$ and $\operatorname{ort}_{u} v$, such that $\operatorname{ort}_{u} v \perp u, \operatorname{proj}_{u} v$ is proportional to u, and $v=\operatorname{proj}_{u} v+\operatorname{ort}_{u} v$.

Euclidean Space: Facts

$$
\begin{aligned}
& \text { (F6) } \rho(A, B)+\rho(B, C)=\rho(A, C) \text { iff } \\
& B \in[A, C]
\end{aligned}
$$

Geometry of Euclidean Affine Plane \mathbb{E}^{2}

Axioms and many facts of 2-dimensional geometry become very easy exercises.

- $\forall A \neq B \in \mathbb{E}^{2}$ there exists a unique line ℓ, passing through A and B.
- For any line ℓ and any point $A \notin \ell$ there exists a unique $\ell_{1} \| \ell$, s.t. $A \in \ell_{1}$.
- $\forall \ell$ and $A \in \mathbb{E}^{2}$ there exists a unique $\ell_{1} \perp \ell$, s.t. $A \in \ell_{1}$.

Geometry of Euclidean Affine Plane \mathbb{E}^{2}

- $A, B, C \in \mathbb{E}^{2}$ form a triangle if $\operatorname{dim}(\operatorname{aff}(\{A, B, C\}))=2$
- \Leftrightarrow three triangle inequalities!
- The barycentric combination
$X=\lambda A+\mu B$ belongs to a line $A B$ and divides the interval (A, B) in the ratio
$\overline{A X}: \overline{X B}=\mu: \lambda$, i.e. $\lambda \overline{A X}=\mu \overline{X B}$. If $\lambda, \mu \geq 0$, then $X \in[A, B]$.

Euclidean Space: Segment

$$
\begin{aligned}
& {[A, B]:=\{X \mid \overline{A X}=\lambda \overline{A B}, 0 \leq \lambda \leq 1\}=} \\
& =\{\alpha A+\beta B \mid \alpha+\beta=1, \alpha, \beta \geq 0\}= \\
& =\{X \mid \rho(A, X)+\rho(X, B)=\rho(A, B)\}
\end{aligned}
$$

The Menelaus Theorem
Suppose $A, B, C \in \mathbb{E}^{2}$ form a triangle, X, Y, Z belong to the intervals
$B C, C A, A B$ or their continuations and divide them in the ratio $\lambda: 1, \mu: 1, \nu: 1$.

Then $\operatorname{dim}(\operatorname{aff}\{X, Y, Z\})=1$ iff
$\lambda \mu \nu=-1$.

The Menelaus Theorem: Picture

The Menelaus Theorem: Proof

Proof:

- The matrix of barycentric coordinates of X, Y, Z with respect to A, B, C :

$$
\operatorname{Mat}(X, Y, Z)=\left(\begin{array}{ccc}
0 & \frac{1}{\lambda+1} & \frac{\lambda}{\lambda+1} \\
\frac{\mu}{\mu+1} & 0 & \frac{1}{\mu+1} \\
\frac{1}{\nu+1} & \frac{\nu}{\nu+1} & 0
\end{array}\right)
$$

- $\operatorname{dim}(\operatorname{aff}(\{X, Y, Z\}))=1 \mathrm{iff}$ $\operatorname{det} \operatorname{Mat}(X, Y, Z)=0 \Leftrightarrow \lambda \mu \nu=-1$.

