LINEAR ALGEBRA

Lecture 2: Euclidean Affine Geometry

Nikolay V. Bogachev

Moscow INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Affine Hull

Suppose $M \subset \mathbb{A}$ and $A_0 \in M$. Then a plane

$$P = A_0 + \langle \overline{A_0 X} \mid X \in M \rangle$$

is the smallest plane that contains M.

This plane is called an affine hull of Mand is denoted by aff(M).

Euclidean Affine Space \mathbb{E}^n

Euclidean Affine Space \mathbb{E}^n is an affine space over $V = \mathbb{R}^n$ equipped with a standard Euclidean inner product

 $(\cdot,\cdot)\colon V\times V\to \mathbb{R},\;(u,v)=u_1v_1+\ldots+u_nv_n$

and a metric (and a norm) on \mathbb{E}^n :

$$\rho(x,y):=\sqrt{(x-y,x-y)}:=\|x-y\|.$$

(F1) $\rho(A, B) \geq 0$, and $\rho(A, B) = 0 \Leftrightarrow A = B$ (F2) Pythagorean Theorem: If $u \perp v$, that is, (u, v) = 0, then w = u - v satisfies the formula: $||w||^2 = ||u||^2 + ||v||^2$. (F3) Cauchy–Bunyakovsky–Schwarz Inequality: $|(u, v)| \leq ||u|| \cdot ||v||$ (F4) Triangle Inequality: $\rho(A, B) + \rho(B, C) > \rho(A, C)$

 $[A, B] := \{X \mid \overline{AX} = \lambda \overline{AB}, \ 0 \le \lambda \le 1\}$ is called a segment (or closed interval) (F5) For any nonzero $u, v \in \mathbb{R}^n$ there exist vectors $\operatorname{proj}_{u} v$ and $\operatorname{ort}_{u} v$, such that $\operatorname{ort}_{u} v \perp u$, $\operatorname{proj}_{u} v$ is proportional to u, and $v = \operatorname{proj}_{u} v + \operatorname{ort}_{u} v$. (F6) $\rho(A, B) + \rho(B, C) = \rho(A, C)$ iff $B \in [A, C]$

(F1)
$$\rho(A, B) \ge 0$$
, and $\rho(A, B) = 0 \Leftrightarrow A = B$

(F2) Pythagorean Theorem: If $u \perp v$, that is, (u, v) = 0, then w = u - vsatisfies the formula: $||w||^2 = ||u||^2 + ||v||^2$.

(F3) Cauchy–Bunyakovsky–Schwarz Inequality: $|(u, v)| \le ||u|| \cdot ||v||$

 $(\mathrm{F4})\ \rho(A,B) + \rho(B,C) \geq \rho(A,C)$

(F5) For any nonzero $u, v \in \mathbb{R}^n$ there exist vectors $\operatorname{proj}_u v$ and $\operatorname{ort}_u v$, such that $\operatorname{ort}_u v \perp u$, $\operatorname{proj}_u v$ is proportional to u, and $v = \operatorname{proj}_u v + \operatorname{ort}_u v$.

(F6)
$$\rho(A, B) + \rho(B, C) = \rho(A, C)$$
 iff $B \in [A, C]$

Geometry of Euclidean Affine Plane \mathbb{E}^2

Axioms and many facts of 2-dimensional geometry become very easy exercises.

- $\forall A \neq B \in \mathbb{E}^2$ there exists a unique line ℓ , passing through A and B.
- For any line ℓ and any point $A \notin \ell$ there exists a unique $\ell_1 \parallel \ell$, s.t. $A \in \ell_1$.
- $\forall \ell \text{ and } A \in \mathbb{E}^2$ there exists a unique $\ell_1 \perp \ell$, s.t. $A \in \ell_1$.

Geometry of Euclidean Affine Plane \mathbb{E}^2

- $A, B, C \in \mathbb{E}^2$ form a triangle if dim $(aff(\{A, B, C\})) = 2$
- $\cdot \Leftrightarrow$ three triangle inequalities!
- The barycentric combination $X = \lambda A + \mu B$ belongs to a line AB and divides the interval (A, B) in the ratio $\overline{AX} : \overline{XB} = \mu : \lambda$, i.e. $\lambda \overline{AX} = \mu \overline{XB}$. If $\lambda, \mu \ge 0$, then $X \in [A, B]$.

Euclidean Space: Segment

$$[A, B] := \{X \mid \overline{AX} = \lambda \overline{AB}, \ 0 \le \lambda \le 1\} =$$
$$= \{\alpha A + \beta B \mid \alpha + \beta = 1, \alpha, \beta \ge 0\} =$$
$$= \{X \mid \rho(A, X) + \rho(X, B) = \rho(A, B)\}.$$

The Menelaus Theorem

Suppose $A, B, C \in \mathbb{E}^2$ form a triangle, X, Y, Z belong to the intervals BC, CA, AB or their continuations and divide them in the ratio $\lambda : 1, \mu : 1, \nu : 1$.

Then dim (aff $\{X, Y, Z\}$) = 1 iff $\lambda \mu \nu = -1$.

The Menelaus Theorem: Picture

The Menelaus Theorem: Proof

Proof:

• The matrix of barycentric coordinates of X, Y, Z with respect to A, B, C:

$$\operatorname{Mat}(X,Y,Z) = \begin{pmatrix} 0 & \frac{1}{\lambda+1} & \frac{\lambda}{\lambda+1} \\ \frac{\mu}{\mu+1} & 0 & \frac{1}{\mu+1} \\ \frac{1}{\nu+1} & \frac{\nu}{\nu+1} & 0 \end{pmatrix}$$

• dim $(\operatorname{aff}(\{X, Y, Z\})) = 1$ iff det $\operatorname{Mat}(X, Y, Z) = 0 \Leftrightarrow \lambda \mu \nu = -1.$