LINEAR ALGEBRA

Lecture 3: Bilinear Forms

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Linear Functions

Suppose V is a vector space with a basis $\{e_1, \dots, e_n\}$. Linear functions $f \colon V \to \Bbbk$: $f(\alpha u + \beta v) = \alpha f(u) + \beta f(v)$.

They form a subspace V^* in a space of all \Bbbk -valued functions $F(V, \Bbbk)$.

Let (v_1, \dots, v_n) be the coordinates of v in $\{e_1, \dots, e_n\}$. Then $f(v) = \sum_{k=1}^n v_k f(e_k)$.

Dual Space

V^* is called a dual space.

Let $\{f_1, \dots, f_n\}$ be linear functions, such that $f_i(e_j) = \delta_{ij}$, where $\delta_{ij} = 0$ for $i \neq j$ and $\delta_{ii} = 1$.

Then $\{f_1, \dots, f_n\}$ is a basis of V^* and it is called a dual basis.

Examples of Linear Functions

- $\cdot \ f(x)=(a,x)=a_1x_1+\ldots+a_nx_n.$
- $\varphi(f) = f(x_0)$ is a linear function on the set of all k-valued functions.
- $\varphi(f) = f'(x_0)$ is a linear function on the set of all differentiable functions.
- $\alpha \in C^*[a,b]$, where $\alpha(f) = \int_a^b f(x) dx$
- $\alpha \in \operatorname{Mat}_n^*(\Bbbk)$, where $\alpha(X) = \operatorname{tr} X$.

Bilinear Forms

A map $\alpha: V \times V \rightarrow \Bbbk$ is called a bilinear form, if it is linear in both arguments.

Let $\{e_1,\ldots,e_n\}$ be a basis of V, and $x=(x_1,\ldots,x_n),$ $y=(y_1,\ldots,y_n)$ be two vectors. Then

$$\alpha(x,y) = \sum_{i,j=1}^{n} a_{ij} x_i y_j.$$

Matrices of Bilinear Forms

That is, $\alpha(x,y) = \sum_{i,j=1}^{n} a_{ij} x_i y_j = X^T A Y.$

When the basis changes:

 $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, coordinates of vectors change too: CX' = X, CY' = Y.

Then $X'^T A' Y' = X^T A Y^T = X'^T (C^T A C) Y$. It implies $A' = C^T A C$.

Examples of Bilinear Forms

- The standard inner product: $(a,b) = a_1b_1 + \ldots + a_nb_n$
- · $\alpha(f,g) = \int_a^b f(x)g(x)dx$
- $\boldsymbol{\cdot} \ \alpha(X,Y) = \mathrm{tr} \ (XY)$

Kernel and Non-degenerate Forms

The kernel of α : $\operatorname{Ker}(\alpha) = \{ v \in V \mid \alpha(u, v) = 0 \,\,\forall u \in V \}.$ α is called non-degenerate if $\text{Ker}(\alpha) = 0$. Clearly. $Ker(\alpha) = \{ v \mid \alpha(v, e_i) = 0, \ j = 1, \dots, n \}.$ $\dim \operatorname{Ker}(\alpha) = n - \operatorname{rk} A.$

Orthogonal Complement

The orthogonal complement of $U \subset V$ is $U^{\perp} = \{ v \in V \mid \alpha(u, v) = 0 \; \forall u \in U \}.$

Clearly, $V^{\perp} = \operatorname{Ker}(\alpha)$.

If α is non-degenerate, then

 $\dim U^{\perp} = \dim V - \dim U and (U^{\perp})^{\perp} = U.$

Symmetric and Skew-Symmetric Forms

 α is called symmetric if $\alpha(x, y) = \alpha(y, x)$, and skew-symmetric if $\alpha(x, y) = -\alpha(y, x)$.

It is equivalent to $A^T = A$ and $A^T = -A$, respectively.

A quadratic form associated to symmetric α is $q(x) = \alpha(x, x)$.