LINEAR ALGEBRA

Lecture 2: Affine Transformations

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Affine Transformations

Affine map $f \colon \mathbb{A} \to \mathbb{A}$ is called an affine transformation.

Bijective affine transformations form the general affine group $Aff(\mathbb{A})$.

A differential map $d: \operatorname{Aff}(\mathbb{A}) \to \operatorname{GL}(V)$ is a homomorphism. Its kernel is a group $T(\mathbb{A})$ of parallel translations $\tau_u: A \mapsto A + v$.

Parallel Translations

For any $f \in Aff(\mathbb{A})$ and $v \in V$ we have $f\tau_v f^{-1} = \tau_{df(v)}.$

Proof: Suppose Y = f(X), then

$$\begin{split} f\tau_v f^{-1}(Y) &= f\tau_v(X) = f(X+v) = \\ &= f(X) + df(v) = Y + df(v) = \tau_{df(v)}(Y). \end{split}$$

Using the vectorization map $v_O \colon X \mapsto \overline{OX}$ we have $\operatorname{GL}(V) \subset \operatorname{Aff}(\mathbb{A})$ is a subgroup.

Normal Subgroup

 $H \subset G$ is called a normal subgroup, if gH = Hg for any $g \in G$, where $gH = \{gh \mid h \in H\}, Hg = \{hg \mid h \in H\}.$ Denoted by $H \triangleleft G$. Examples:

- Any subgroup of Abelian group
- A subgroup $H \subset G$ with exactly 2 cosets gH is normal
- $\boldsymbol{\cdot} \ T(\mathbb{A})\triangleleft \operatorname{Aff}(\mathbb{A})$

Homothety

A homothery with the center $O \in \mathbb{A}$ and coefficient $\lambda \in \mathbb{k}$ is

 $H_O^{\lambda}(O+v) = O + \lambda v.$

In other words, $H_O^{\lambda}(X) = Y$, such that $\overline{OY} = \lambda \overline{OX}$. Clearly, $dH_O^{\lambda} = \lambda$ Id.

Simplices

Suppose, $\{A_0, A_1, \dots, A_n\}$ and $\{B_0, B_1, \dots, B_n\}$ are two systems of affinely independent points in an $n - \dim$ space \mathbb{A} . Then, \exists ! affine transformation, such that $f(A_j) = B_j$, $j = 0, \dots, n$.

Proof: \exists ! linear map φ , such that $\varphi(\overline{A_0A_j}) = \overline{B_0B_j}$. Then $f(x) := \varphi(x) + \overline{A_0B_0}$.

Notions of Affine Geometry

What are the **notions** of affine geometry?

- Planes map to planes
- Parallel lines map to parallel lines
- Intervals and segments
- Barycentric combinations, midpoints, centers of mass
- Simplices
- But NOT squares, angles, circles!