LINEAR ALGEBRA
 Lecture 2: Affine Transformations

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Affine Transformations

Affine map $f: \mathbb{A} \rightarrow \mathbb{A}$ is called an affine transformation.

Bijective affine transformations form the general affine group Aff(A).

A differential map $d: \operatorname{Aff}(\mathbb{A}) \rightarrow \mathrm{GL}(V)$ is a homomorphism. Its kernel is a group $T(\mathbb{A})$ of parallel translations $\tau_{v}: A \mapsto A+v$.

Parallel Translations

For any $f \in \operatorname{Aff}(\mathbb{A})$ and $v \in V$ we have $f \tau_{v} f^{-1}=\tau_{d f(v)}$.

Proof: Suppose $Y=f(X)$, then

$$
\begin{aligned}
& \quad f \tau_{v} f^{-1}(Y)=f \tau_{v}(X)=f(X+v)= \\
& =f(X)+d f(v)=Y+d f(v)=\tau_{d f(v)}(Y)
\end{aligned}
$$

Using the vectorization map $v_{O}: X \mapsto \overline{O X}$ we have $\mathrm{GL}(V) \subset \operatorname{Aff}(\mathbb{A})$ is a subgroup.

Normal Subgroup

$$
\begin{aligned}
& H \subset G \text { is called a normal subgroup, if } \\
& g H=H g \text { for any } g \in G \text {, where } \\
& g H=\{g h \mid h \in H\}, H g=\{h g \mid h \in H\} \text {. } \\
& \text { Denoted by } H \triangleleft G \text {. Examples: }
\end{aligned}
$$

- Any subgroup of Abelian group
- A subgroup $H \subset G$ with exactly 2 cosets $g H$ is normal
- $T(\mathbb{A}) \triangleleft \operatorname{Aff}(\mathbb{A})$

Homothety

A homothery with the center $O \in \mathbb{A}$ and coefficient $\lambda \in \mathbb{k}$ is

$$
H_{O}^{\lambda}(O+v)=O+\lambda v .
$$

In other words, $H_{O}^{\lambda}(X)=Y$, such that $\overline{O Y}=\lambda \overline{O X}$.
Clearly, $d H_{O}^{\lambda}=\lambda$ Id.

Simplices

Suppose, $\left\{A_{0}, A_{1}, \ldots, A_{n}\right\}$ and $\left\{B_{0}, B_{1}, \ldots, B_{n}\right\}$ are two systems of affinely independent points in an n - dim space A. Then, \exists ! affine transformation, such that $f\left(A_{j}\right)=B_{j}$,
$j=0, \ldots, n$.
Proof: \exists ! linear map φ, such that $\varphi\left(\overline{A_{0} A_{j}}\right)=\overline{B_{0} B_{j}}$.
Then $f(x):=\varphi(x)+\overline{A_{0} B_{0}}$.

Notions of Affine Geometry

What are the notions of affine geometry?

- Planes map to planes
- Parallel lines map to parallel lines
- Intervals and segments
- Barycentric combinations, midpoints, centers of mass
- Simplices
- But NOT squares, angles, circles!

