Linear Algebra
 Lecture 2: Affine Spaces

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Affine Spaces

A set \mathbb{A} is an affine space over a vector space V (or associated to V) if

- any points $A, B \in \mathbb{A}$ correspond to $\overline{A B} \in V$, s.t. a vectorization map

$$
v_{A}: A \rightarrow V, \quad X \mapsto \overline{A X}
$$

is bijective,

- and for any points $A, B, C \in \mathbb{A}$ we have $\overline{A B}+\overline{B C}=\overline{A C}$.

Affine Spaces

In other words, each $v \in V$ corresponds to the translation map

$$
\tau_{v}: \mathbb{A} \rightarrow \mathbb{A}, \quad X \mapsto X+v,
$$

such that

- for any points $A, B \in \mathbb{A}$ there exists a unique vector v, s.t. $A+v=B$,
- $\tau_{u} \circ \tau_{v}=\tau_{u+v}$ for any $u, v \in V$.

Exercises/Examples

- Any vector space V can be equipped by an affine structure over itself.
- Suppose $A, B, C, D \in \mathbb{A}$ and
$\overline{A B}=\overline{C D}$. Then $\overline{A C}=\overline{B D}$.
- A set of all reduced quadratic trinomials $\left\{x^{2}+p x+q \mid p, q \in \mathbb{R}\right\}$ is an affine space over $\mathbb{R}[x]_{1}$.

Affine Planes or Subpaces

A plane (subspace) in an affine space A is a set of a form $P:=A+U$, where $A \in \mathbb{A}$, and $U \subset V$ is a subspace.

- $\operatorname{dim} P:=\operatorname{dim} U$
- a line: $\operatorname{dim} P=1$
- a hyperplane: $\operatorname{dim} P=n-1$.

Theorem on $k+1$ points
Given any $k+1$ points in \mathbb{A}, there is a plane of dim $\leq k$, passing through these points.
Moreover, if these points are not contained in any plane of dim $<k$, then there is a unique k - dim plane, passing through these points.

Theorem on $k+1$ points

Proof:

- Let $A_{0}, A_{1}, \ldots, A_{k} \in \mathbb{A}$. Then $P:=A_{0}+\left\langle\overline{A_{0} A_{1}}, \overline{A_{0} A_{2}}, \ldots, \overline{A_{0} A_{k}}\right\rangle$
- If $\operatorname{dim} P=k$, then the vectors
$\overline{A_{0} A_{1}}, \overline{A_{0} A_{2}}, \ldots, \overline{A_{0} A_{k}}$ are linearly independent and P is unique.
$A_{0}, A_{1}, \ldots, A_{k} \in \mathbb{A}$ are affinely dependent if they lie in a plane of $\operatorname{dim}<k$, and affinely independent otherwise.

Affine Coordinates

- We can choose a point $O \in \mathbb{A}$ (the origin). Then any point $A \in \mathbb{A}$ is given by its position vector $\overline{O A}$.
- A point O with a basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of V is a frame of an affine space A.
- The coordinates of a point X in the frame $\left(O ; e_{1}, \ldots, e_{n}\right)$ equal $\left(x_{1}, \ldots, x_{n}\right)$, where $\overline{O X}=x_{1} e_{1}+\ldots+x_{n} e_{n}$.

Affine Coordinates

- This coordinate system in the frame $\left(O ; e_{1}, \ldots, e_{n}\right)$ is so called affine coordinate system.
- Coordinates of $A+v$ are equal to the sums of coordinates of A and coordinates of v.
- $\overline{A B}=B-A$.

Solutions of Systems of Linear Equations

Affine planes are sets of solutions of systems of linear equations.

- $\sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, i=1, \ldots, m$.
- $\left(x_{1}, \ldots, x_{n}\right)$ are affine coordinates in a frame $\left(O ; e_{1}, \ldots, e_{n}\right)$.
- Let A_{0} be a solution of the system (1).

Then X is a solution iff $\overline{A_{0} X}$ satisfies the system of homogeneous equations $\sum_{j=1}^{n} a_{i j} x_{j}=0, i=1, \ldots, m$.

Solutions of Systems of Linear Equations

- Thus, if the system is compatible, then its set of solutions is the plane $A_{0}+U$.
- Suppose now $P=A+U$ is a plane.
- U is a set of solutions of a system of homogeneous linear equations.
- Then $A+U$ is a set of solutions of the system with values b_{i}, that left-hand side assumes at the point A.

Theorem on Relative Position of Planes

Suppose $P_{1}=A_{1}+U_{1}$ and $P_{2}=A_{2}+U_{2}$. Then $P_{1} \cap P_{2} \neq \emptyset$ iff $\overline{A_{1} A_{2}} \in U_{1}+U_{2}$. Proof:

- $P_{1} \cap P_{2} \neq \emptyset$ iff $\exists u_{1} \in U_{1}$ and $u_{2} \in U_{2}$,
s.t. $A_{1}+u_{1}=A_{2}+u_{2}$.
- That is, $\overline{A_{1} A_{2}}=u_{1}-u_{2}$.
- It is possible iff $\overline{A_{1} A_{2}} \in U_{1}+U_{2}$.

Relative Position of Planes

Suppose $P_{1}=A_{1}+U_{1}$ and $P_{2}=A_{2}+U_{2}$.

- As it was proved, $P_{1} \cap P_{2} \neq \emptyset$ iff

$$
\overline{A_{1} A_{2}} \in U_{1}+U_{2} .
$$

- P_{1} and P_{2} are called parallel if $U_{1} \subset U_{2}$ or $U_{2} \subset U_{1}$.
- P_{1} and P_{2} are skew if $P_{1} \cap P_{2}=\emptyset$ and $U_{1} \cap U_{2}=0$.

Barycentric Coordinates

We can define some special linear combinations of points in \mathbb{A}.

- Suppose $A_{1}, \ldots, A_{k} \in \mathbb{A}$, and

$$
\lambda_{1}+\ldots+\lambda_{k}=1 .
$$

- Then a barycentric combination

$$
\begin{aligned}
& \sum_{j=1}^{k} \lambda_{j} A_{j} \text { is a point } A \text {, s.t. } \\
& \overline{O A}=\sum_{j=1}^{k} \lambda_{j} \overline{O A_{j}} .
\end{aligned}
$$

Barycentric Coordinates

- This definition does not depend on a point O ! It is due to the fact that $\sum_{j=1}^{k} \lambda_{j}=1$.
- Indeed, $\overline{O^{\prime} A}=\overline{O^{\prime} O}+\overline{O A}=$ $\sum_{j=1}^{k} \lambda_{j}\left(\overline{O^{\prime} O}+\overline{O A_{j}}\right)=\sum_{j=1}^{k} \lambda_{j}\left(\overline{O^{\prime} A_{j}}\right)$.
- $\operatorname{center}\left(A_{1}, \ldots, A_{k}\right)=\frac{1}{k}\left(A_{1}+\ldots+A_{k}\right)$ is a center of mass.

Barycentric Coordinates

- Let $A_{0}, A_{1}, \ldots, A_{n} \in \mathbb{A}$ be affinely independent. It is equivalent to linear independence of $\overline{A_{0} A_{1}}, \ldots, \overline{A_{0} A_{n}}$.
- Then any point $X \in \mathbb{A}$ has a unique representation

$$
X=\sum_{k=0}^{n} x_{k} A_{k}, \quad \sum_{k=0}^{n} x_{k}=1
$$

Barycentric Coordinates

- Indeed, we have that

$$
\overline{A_{0} X}=\sum_{k=1}^{n} x_{k} \overline{A_{0} A_{k}}
$$

- It implies, that x_{1}, \ldots, x_{n} are the coordinates of $\overline{A_{0} X}$ in the basis $\left\{\overline{A_{0} A_{1}}, \ldots, \overline{A_{0} A_{n}}\right\}$.
- It remains to take $x_{0}=1-\sum_{k=1}^{n} x_{k}$.

Affine Independence and Barycentric Coordinates: Theorem

Points $X_{0}, X_{1}, \ldots, X_{k} \in \mathbb{A}$ are affinely independent

if and only if
the rank of a matrix $\operatorname{Mat}\left(X_{0}, X_{1}, \ldots, X_{k}\right)$
of their barycentric coordinates (with respect to $A_{0}, A_{1}, \ldots, A_{n}$) equals $k+1$.

Affine Independence and Barycentric

Coordinates: Theorem

Proof:

- Let $x_{j 0}, x_{j 1}, \ldots, x_{j n}$ be coordinates of $X_{j}: \overline{A_{0} X_{j}}=\sum_{s=1}^{n} x_{j s} \overline{A_{0} A_{s}}$.
- We add to the 1st column of
$\operatorname{Mat}\left(X_{0}, X_{1}, \ldots, X_{k}\right)$ the sum of all other columns. After that we can differ the 1st row from all other rows. The rank is invariant.

Affine Independence and Barycentric
Coordinates: Theorem
Proof: Thus, we obtain a matrix

$$
\left(\begin{array}{cccc}
1 & x_{01} & \ldots & x_{0 n} \\
0 & x_{11}-x_{01} & \ldots & x_{1 n}-x_{0 n} \\
\ldots & \ldots & \ldots & \ldots \\
0 & x_{k 1}-x_{01} & \ldots & x_{k n}-x_{0 n}
\end{array}\right)
$$

Its submatrix is $\operatorname{Mat}\left(\overline{X_{0} X_{1}}, \ldots, \overline{X_{0} X_{k}}\right)$ of rank equals k.

