LINEAR ALGEBRA

Lecture 2: Affine Spaces

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Affine Spaces

A set \mathbb{A} is an affine space over a vector space V(or associated to V) if

• any points $A, B \in \mathbb{A}$ correspond to $\overline{AB} \in V$, s.t. a vectorization map

 $v_A\colon \mathbb{A}\to V, \quad X\mapsto \overline{AX}$

is bijective,

• and for any points $A, B, C \in \mathbb{A}$ we have $\overline{AB} + \overline{BC} = \overline{AC}$.

Affine Spaces

In other words, each $v \in V$ corresponds to the translation map

 $\tau_v\colon \mathbb{A}\to \mathbb{A}, \quad X\mapsto X+v,$

such that

• for any points $A, B \in \mathbb{A}$ there exists a unique vector v, s.t. A + v = B,

•
$$\tau_u \circ \tau_v = \tau_{u+v}$$
 for any $u, v \in V$.

Exercises/Examples

- Any vector space *V* can be equipped by an affine structure over itself.
- Suppose $A, B, C, D \in \mathbb{A}$ and $\overline{AB} = \overline{CD}$. Then $\overline{AC} = \overline{BD}$.
- A set of all reduced quadratic trinomials $\{x^2 + px + q \mid p, q \in \mathbb{R}\}$ is an affine space over $\mathbb{R}[x]_1$.

Affine Planes or Subpaces

A plane (subspace) in an affine space \mathbb{A} is a set of a form P := A + U, where $A \in \mathbb{A}$, and $U \subset V$ is a subspace.

- $\cdot \dim P := \dim U$
- a line: dim P = 1
- a hyperplane: dim P = n 1.

Theorem on k + 1 points

Given any k + 1 points in A, there is a plane of dim $\leq k$, passing through these points. Moreover, if these points are not contained in any plane of dim < k, then

there is a unique $k - \dim plane$, passing through these points.

Theorem on k + 1 points

Proof:

- Let $A_0, A_1, \dots, A_k \in \mathbb{A}$. Then $P := A_0 + \langle \overline{A_0 A_1}, \overline{A_0 A_2}, \dots, \overline{A_0 A_k} \rangle$
- If dim P = k, then the vectors $\overline{A_0A_1}, \overline{A_0A_2}, \dots, \overline{A_0A_k}$ are linearly independent and P is unique.

 $A_0, A_1, \dots, A_k \in \mathbb{A}$ are affinely dependent if they lie in a plane of dim < k, and affinely independent otherwise.

Affine Coordinates

- We can choose a point $O \in \mathbb{A}$ (the origin). Then any point $A \in \mathbb{A}$ is given by its position vector \overline{OA} .
- A point O with a basis $\{e_1, \dots, e_n\}$ of V is a frame of an affine space \mathbb{A} .
- The coordinates of a point X in the frame $(O; e_1, \dots, e_n)$ equal (x_1, \dots, x_n) , where $\overline{OX} = x_1e_1 + \dots + x_ne_n$.

Affine Coordinates

- This coordinate system in the frame $(O; e_1, \dots, e_n)$ is so called affine coordinate system.
- Coordinates of A + v are equal to the sums of coordinates of A and coordinates of v.
- $\cdot \ \overline{AB} = B A.$

Solutions of Systems of Linear Equations

Affine planes are sets of solutions of systems of linear equations.

- $\sum_{j=1}^{n} a_{ij} x_j = b_i, i = 1, \dots, m.$ (1)
- (x_1, \dots, x_n) are affine coordinates in a frame $(O; e_1, \dots, e_n)$.
- Let A_0 be a solution of the system (1). Then X is a solution iff $\overline{A_0X}$ satisfies the system of homogeneous equations $\sum_{j=1}^{n} a_{ij}x_j = 0, i = 1, ..., m$.

Solutions of Systems of Linear Equations

- Thus, if the system is compatible, then its set of solutions is the plane $A_0 + U$.
- Suppose now P = A + U is a plane.
- *U* is a set of solutions of a system of homogeneous linear equations.
- Then A + U is a set of solutions of the system with values b_i , that left-hand side assumes at the point A.

Theorem on Relative Position of Planes

Suppose $P_1 = A_1 + U_1$ and $P_2 = A_2 + U_2$. Then $P_1 \cap P_2 \neq \emptyset$ iff $\overline{A_1A_2} \in U_1 + U_2$. **Proof:**

- $\begin{array}{l} \cdot \ P_1 \cap P_2 \neq \emptyset \text{ iff } \exists \ u_1 \in U_1 \text{ and } u_2 \in U_2 \text{,} \\ \text{ s.t. } A_1 + u_1 = A_2 + u_2. \end{array}$
- That is, $\overline{A_1A_2} = u_1 u_2$.
- It is possible iff $\overline{A_1A_2} \in U_1 + U_2$.

Relative Position of Planes

Suppose $P_1 = A_1 + U_1$ and $P_2 = A_2 + U_2$.

- · As it was proved, $P_1 \cap P_2 \neq \emptyset$ iff $\overline{A_1A_2} \in U_1 + U_2.$
- P_1 and P_2 are called parallel if $U_1 \subset U_2$ or $U_2 \subset U_1$.
- P_1 and P_2 are skew if $P_1 \cap P_2 = \emptyset$ and $U_1 \cap U_2 = 0$.

We can define some special linear combinations of points in \mathbb{A} .

- Suppose $A_1,\ldots,A_k\in\mathbb{A}$, and $\lambda_1+\ldots+\lambda_k=1.$
- Then a barycentric combination $\sum_{j=1}^{k} \lambda_j A_j \text{ is a point } A, \text{ s.t.}$ $\overline{OA} = \sum_{j=1}^{k} \lambda_j \overline{OA_j}.$

- This definition does not depend on a point O! It is due to the fact that $\sum_{j=1}^{k} \lambda_j = 1.$
- · Indeed, $\overline{O'A} = \overline{O'O} + \overline{OA} =$ $\sum_{j=1}^{k} \lambda_j (\overline{O'O} + \overline{OA_j}) = \sum_{j=1}^{k} \lambda_j (\overline{O'A_j}).$
- center $(A_1, \dots, A_k) = \frac{1}{k}(A_1 + \dots + A_k)$ is a center of mass.

- Let $A_0, A_1, \dots, A_n \in \mathbb{A}$ be affinely independent. It is equivalent to linear independence of $\overline{A_0A_1}, \dots, \overline{A_0A_n}$.
- Then any point $X \in \mathbb{A}$ has a unique representation

$$X = \sum_{k=0}^{n} x_k A_k, \quad \sum_{k=0}^{n} x_k = 1.$$

• Indeed, we have that

$$\overline{A_0X} = \sum_{k=1}^n x_k \overline{A_0A_k}.$$

- It implies, that x_1, \ldots, x_n are the coordinates of $\overline{A_0 X}$ in the basis $\{\overline{A_0 A_1}, \ldots, \overline{A_0 A_n}\}.$
- It remains to take $x_0 = 1 \sum_{k=1}^n x_k$.

Affine Independence and Barycentric Coordinates: Theorem

Points $X_0, X_1, \dots, X_k \in \mathbb{A}$ are affinely independent

if and only if

the rank of a matrix $Mat(X_0, X_1, ..., X_k)$ of their barycentric coordinates (with respect to $A_0, A_1, ..., A_n$) equals k + 1.

Affine Independence and Barycentric Coordinates: Theorem

Proof:

- Let $x_{j0}, x_{j1}, \dots, x_{jn}$ be coordinates of X_j : $\overline{A_0 X_j} = \sum_{s=1}^n x_{js} \overline{A_0 A_s}$.
- We add to the 1st column of $Mat(X_0, X_1, \dots, X_k)$ the sum of all other columns. After that we can differ the 1st row from all other rows. The rank is invariant.

Affine Independence and Barycentric Coordinates: Theorem

Proof: Thus, we obtain a matrix

$$\begin{pmatrix} 1 & x_{01} & \dots & x_{0n} \\ 0 & x_{11} - x_{01} & \dots & x_{1n} - x_{0n} \\ \dots & \dots & \dots & \dots \\ 0 & x_{k1} - x_{01} & \dots & x_{kn} - x_{0n} \end{pmatrix}$$

Its submatrix is $Mat(\overline{X_0X_1}, \dots, \overline{X_0X_k})$ of rank equals k.