LINEAR ALGEBRA

Lecture 2: Affine Maps

Nikolay V. Bogachev

MOSCOW INSTITUTE OF PHYSICS AND TECHNOLOGY, Department of Discrete Mathematics, Laboratory of Advanced Combinatorics and Network Applicationss

Change of Basis

Suppose $\{e_1, \dots, e_n\}$ is a basis of V, and we change a basis to $\{e'_1, \dots, e'_n\}$, where $e'_j = \sum_{i=1}^n c_{ij} e_i$. In matrix form: $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C$, where $C = (c_{ij})$ is the transition matrix. Then

 $\begin{aligned} x &= x_1 e_1 + \ldots + x_n e_n = x_1' e_1' + \ldots + x_n' e_n', \\ \text{that is, } x &= (e_1', \ldots, e_n') X' = (e_1, \ldots, e_n) X. \end{aligned}$

Change of Basis and Maps

Using matrix form for bases, we have $(e'_1, \dots, e'_n)X' = (e_1, \dots, e_n)CX' = = (e_1, \dots, e_n)X$. Thus, CX' = X.

Suppose $F: V \to W$ is a linear map, $\{e_1, \dots, e_n\}$ is a basis of V. Then $F(v) = F \cdot (v_1, \dots, v_n)^T = FV$ in a matrix form, and we change a basis again $(e'_1, \dots, e'_n) = (e_1, \dots, e_n)C.$

Linear Maps and Coordinates

Then F(v) = FV = F'V', and V = CV'. It implies FCV' = F'V',

thus F' = FC.

Affine Maps

Suppose \mathbb{A} and \mathbb{A}' are affine spaces over V and V' (over \mathbb{k}), respectively. Then

 $f\colon \mathbb{A}\to \mathbb{A}'$

with the property

 $f(A+v)=f(A)+\varphi(v),\quad A\in\mathbb{A}, v\in V$

for some linear map $\varphi \colon V \to V'$ is called an affine map.

Affine Maps

It implies that

 $\varphi(\overline{AB})=\overline{f(A)f(B)}, \quad A,B\in \mathbb{A}.$

That is, a linear map $\varphi \colon V \to V'$ is uniquely determined by f and is called the differential of f. We will denote it by $\varphi = df$

Coordinates

Suppose O, O' are the origins of \mathbb{A}, \mathbb{A}' . Then, using the vectorization $v_O(X) = \overline{OX}$: $f(\overline{OX}) = \varphi(\overline{OX}) + \overline{O'O}$. That is, in coordinates $f(x) = \varphi(x) + b$, where $x = (x_1, \dots, x_n)$ are coordinates both of $X \in \mathbb{A}$ and \overline{OX} in V. Thus, if $f(x) = y = (y_1, ..., y_n)$, $y_i = \sum_{j=1}^n a_{ij} x_j + b_i, \ i = 1, \dots, n.$

Composition of Affine Maps

Suppose $f: \mathbb{A} \to \mathbb{A}'$ and $g: \mathbb{A}' \to \mathbb{A}''$. Then $gf: \mathbb{A} \to \mathbb{A}''$ is also an affine map and $d(gf) = dg \cdot df$. **Proof:** (gf)(A+v) = g(f(A)+df(v)) = g(f(A))+ $dg(df(v)) = (qf)(A) + (dg \cdot df)(v)$.

Bijective Affine Maps

 $f \colon \mathbb{A} \to \mathbb{A}'$ is bijective iff $df \colon V \to V'$ is bijective. **Proof:** Using the origins O and O' = f(O), we have f(x) = df(x).

An isomorphism of affine spaces is bijective affine map.

 $\mathbb{A} \simeq \mathbb{A}' \text{ iff } \dim \mathbb{A} = \dim \mathbb{A}'.$

Images of Affine Maps

Let $f: \mathbb{A} \to \mathbb{A}'$ be an affine map. Then the image of $P = A_0 + U$ is $f(P) = f(A_0) + df(U)$, and $f\left(\sum_k \lambda_k A_k\right) = \sum_k \lambda_k f(A_k).$

Proof: Using the vectorization, $a_k = \overline{OA_k}$, and $f(\sum_k \lambda_k A_k) = df(\sum_k \lambda_k a_k) + b = \sum_k (\lambda_k df(a_k) + b) = \sum_k \lambda_k f(A_k)$.

Affine-Linear Functions

A particular case of affine maps are affine-linear functions $f \colon \mathbb{A} \to \mathbb{k}$, s.t.

 $f(A+v) = f(A) + \alpha(v),$

where $\alpha \colon V \to \Bbbk$ is a linear function on V. Barycentric coordinates are affine-linear functions!

 $f \equiv \text{const} \Leftrightarrow df = 0.$