Linear Algebra
 Lecture 2: Affine Maps

Nikolay V. Bogachev

Moscow Institute of Physics and Technology,
Department of Discrete Mathematics,
Laboratory of Advanced Combinatorics and Network Applicationss

Change of Basis

Suppose $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V, and we change a basis to $\left\{e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right\}$, where $e_{j}^{\prime}=\sum_{i=1}^{n} c_{i j} e_{i}$.
In matrix form: $\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)=\left(e_{1}, \ldots, e_{n}\right) C$, where $C=\left(c_{i j}\right)$ is the transition matrix. Then
$x=x_{1} e_{1}+\ldots+x_{n} e_{n}=x_{1}^{\prime} e_{1}^{\prime}+\ldots+x_{n}^{\prime} e_{n}^{\prime}$, that is, $x=\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) X^{\prime}=\left(e_{1}, \ldots, e_{n}\right) X$.

Change of Basis and Maps

Using matrix form for bases, we have $\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right) X^{\prime}=\left(e_{1}, \ldots, e_{n}\right) C X^{\prime}=$ $=\left(e_{1}, \ldots, e_{n}\right) X$. Thus, $C X^{\prime}=X$.

Suppose $F: V \rightarrow W$ is a linear map, $\left\{e_{1}, \ldots, e_{n}\right\}$ is a basis of V. Then $F(v)=F \cdot\left(v_{1}, \ldots, v_{n}\right)^{T}=F V$ in a matrix form, and we change a basis again $\left(e_{1}^{\prime}, \ldots, e_{n}^{\prime}\right)=\left(e_{1}, \ldots, e_{n}\right) C$.

Linear Maps and Coordinates

Then

$$
F(v)=F V=F^{\prime} V^{\prime}
$$

$$
\text { and } V=C V^{\prime} \text {. It implies }
$$

$$
F C V^{\prime}=F^{\prime} V^{\prime}
$$

thus $F^{\prime}=F C$.

Affine Maps

Suppose \mathbb{A} and \mathbb{A}^{\prime} are affine spaces over V and V^{\prime} (over \mathbb{k}), respectively. Then

$$
f: \mathbb{A} \rightarrow \mathbb{A}^{\prime}
$$

with the property

$$
f(A+v)=f(A)+\varphi(v), \quad A \in \mathbb{A}, v \in V
$$

for some linear map $\varphi: V \rightarrow V^{\prime}$ is called an affine map.

Affine Maps

It implies that

$$
\varphi(\overline{A B})=\overline{f(A) f(B)}, \quad A, B \in \mathbb{A}
$$

That is, a linear map $\varphi: V \rightarrow V^{\prime}$ is uniquely determined by f and is called the differential of f. We will denote it by $\varphi=d f$

Coordinates

Suppose O, O^{\prime} are the origins of $\mathbb{A}, \mathbb{A}^{\prime}$. Then, using the vectorization
$v_{O}(X)=\overline{O X}: f(\overline{O X})=\varphi(\overline{O X})+\overline{O^{\prime} O}$.
That is, in coordinates $f(x)=\varphi(x)+b$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ are coordinates both of $X \in \mathbb{A}$ and $\overline{O X}$ in V.
Thus, if $f(x)=y=\left(y_{1}, \ldots, y_{n}\right)$,

$$
y_{i}=\sum_{j=1}^{n} a_{i j} x_{j}+b_{i}, i=1, \ldots, n .
$$

Composition of Affine Maps

Suppose $f: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ and $g: \mathbb{A}^{\prime} \rightarrow \mathbb{A}^{\prime \prime}$. Then $g f: \mathbb{A} \rightarrow \mathbb{A}^{\prime \prime}$ is also an affine map and
$d(g f)=d g \cdot d f$.
Proof:

$$
\begin{aligned}
& (g f)(A+v)=g(f(A)+d f(v))=g(f(A))+ \\
& d g(d f(v))=(g f)(A)+(d g \cdot d f)(v) .
\end{aligned}
$$

Bijective Affine Maps

$f: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ is bijective iff $d f: V \rightarrow V^{\prime}$ is bijective.
Proof: Using the origins O and $O^{\prime}=f(O)$,
we have $f(x)=d f(x)$.
An isomorphism of affine spaces is bijective affine map.
$\mathbb{A} \simeq \mathbb{A}^{\prime}$ iff $\operatorname{dim} \mathbb{A}=\operatorname{dim} \mathbb{A}^{\prime}$.

Images of Affine Maps

Let $f: \mathbb{A} \rightarrow \mathbb{A}^{\prime}$ be an affine map. Then the image of $P=A_{0}+U$ is
$f(P)=f\left(A_{0}\right)+d f(U)$, and

$$
f\left(\sum_{k} \lambda_{k} A_{k}\right)=\sum_{k} \lambda_{k} f\left(A_{k}\right)
$$

Proof: Using the vectorization, $a_{k}=\overline{O A_{k}}$, and $f\left(\sum_{k} \lambda_{k} A_{k}\right)=d f\left(\sum_{k} \lambda_{k} a_{k}\right)+b=$ $\sum_{k}\left(\lambda_{k} d f\left(a_{k}\right)+b\right)=\sum_{k} \lambda_{k} f\left(A_{k}\right)$.

Affine-Linear Functions

A particular case of affine maps are affine-linear functions $f: \mathbb{A} \rightarrow \mathbb{k}$, s.t.

$$
f(A+v)=f(A)+\alpha(v),
$$

where $\alpha: V \rightarrow \mathbb{k}$ is a linear function on V. Barycentric coordinates are affine-linear functions!

$$
f \equiv \text { const } \Leftrightarrow d f=0
$$

