Quadratic Forms and Symmetric Bilinear Functions

$\mathbf{L A} 3 \diamond \mathbf{1}$. Find the matrix of a bilinear function in new basis $\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$, if it has the matrix

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

in the old basis $\left(e_{1}, e_{2}, e_{3}\right)$, where

$$
e_{1}^{\prime}=e_{1}-e_{2}, \quad e_{2}^{\prime}=e_{1}+e_{3}, \quad e_{3}^{\prime}=e_{1}+e_{2}+e_{3} .
$$

LA3 \diamond 2. Prove that the determinant of a skew-symmetric integral matrix is a square of some integer number.

LA3 $\diamond 3$. Suppose f is a skew-symmetric bilinear function on a space V, W is a subspace of V and W^{\perp} is its orthogonal complement with respect to f. Prove that $\operatorname{dim} W-\operatorname{dim}\left(W \cap W^{\perp}\right)$ is an even number.
$\mathbf{L A} \triangleleft \triangleleft 4$. Are the bilinear functions with matrices

$$
\left(\begin{array}{ccc}
1 & 2 & 3 \\
2 & 0 & -1 \\
3 & -1 & 3
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 3 & 0 \\
3 & 1 & 1 \\
0 & 1 & 5
\end{array}\right)
$$

isomorphic to each other?
LA3 $\diamond 5$. Find all $\lambda \in \mathbb{R}$ for which the quadratic form

$$
q(x)=5 x_{1}^{2}+x_{2}^{2}+\lambda x_{3}^{2}+4 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}
$$

is positive definite.
LA3 $\triangleleft 6$. Find the positive and negative inertial indexes of the quadratic form $q(x)=\operatorname{tr} x^{2}$ on the space $\operatorname{Mat}_{n}(\mathbb{R})$.

