Linear Maps and Bilinear Functions

LA21. Suppose that a linear map $A: V \to W$ in the bases (v_1, v_2, v_3) of V and (w_1, w_2) of W has the matrix

$$\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}.$$

Find the matrix of *A* in bases $(v_1, v_1 + v_2, v_1 + v_2 + v_3)$ and $(w_1, w_1 + w_2)$.

LA2 \diamond **2.** Suppose *A*, *B*: *V* \rightarrow *W* are linear maps and dim(Im *A*) \leq dim(Im *B*). Prove that there exist such linear operators *C*: *V* \rightarrow *V* and *D*: *W* \rightarrow *W* that *A* = *DBC* and *C* (or *D*) is non-degenerate.

LA2 \diamond **3.** Suppose *f* is a nonzero linear function on some vector space *V* and *U* = ker *f*. Prove that *V* = *U* $\oplus \langle a \rangle$ for any $a \notin U$.

LA2>4. Find the number of all

- (a) linear maps $f \colon \mathbb{F}_q^n \to \mathbb{F}_q^k$.
- (b) linear injective maps $f: \mathbb{F}_q^n \to \mathbb{F}_q^k$.
- (c) linear functions $f: \mathbb{F}_q^n \to \mathbb{F}_q$.

LA2 \diamond 5. Which of the following functions are bilinear and which are symmetric?

(a)
$$f(X, Y) = X^T Y$$

(b) $f(A, B) = \text{tr} (AB)$
(c) $f(A, B) = \text{tr} (AB - BA)$
(d) $f(A, B) = \text{tr} (A + B)$
(e) $f(A, B) = \det(AB)$
(f) $f(A, B) = (AB)_{ij}$
(g) $\alpha(f, g) = \int_a^b f(x)g(x)dx$ on the space $C[a, b]$.