## Linear Maps and Bilinear Functions

LA2 $\diamond$. Suppose that a linear map $A: V \rightarrow W$ in the bases $\left(v_{1}, v_{2}, v_{3}\right)$ of $V$ and $\left(w_{1}, w_{2}\right)$ of $W$ has the matrix

$$
\left(\begin{array}{lll}
0 & 1 & 2 \\
3 & 4 & 5
\end{array}\right)
$$

Find the matrix of $A$ in bases $\left(v_{1}, v_{1}+v_{2}, v_{1}+v_{2}+v_{3}\right)$ and $\left(w_{1}, w_{1}+w_{2}\right)$.
LA2 $\triangleleft$ 2. Suppose $A, B: V \rightarrow W$ are linear maps and $\operatorname{dim}(\operatorname{Im} A) \leq \operatorname{dim}(\operatorname{Im} B)$. Prove that there exist such linear operators $C: V \rightarrow V$ and $D: W \rightarrow W$ that $A=D B C$ and $C($ or $D)$ is non-degenerate.

LA2 $\diamond 3$. Suppose $f$ is a nonzero linear function on some vector space $V$ and $U=\operatorname{ker} f$. Prove that $V=U \oplus\langle a\rangle$ for any $a \notin U$.

LA2 $\diamond 4$. Find the number of all
(a) linear maps $f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{k}$.
(b) linear injective maps $f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{k}$.
(c) linear functions $f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}$.

LA2 $\diamond$. Which of the following functions are bilinear and which are symmetric?
(a) $f(X, Y)=X^{T} Y$
(b) $f(A, B)=\operatorname{tr}(A B)$
(c) $f(A, B)=\operatorname{tr}(A B-B A)$
(d) $f(A, B)=\operatorname{tr}(A+B)$
(e) $f(A, B)=\operatorname{det}(A B)$
(f) $f(A, B)=(A B)_{i j}$
(g) $\alpha(f, g)=\int_{a}^{b} f(x) g(x) d x$ on the space $C[a, b]$.

