Affine and Vector Spaces

LA1•1. Suppose ℓ_1 and ℓ_2 are skew lines in the space \mathbb{R}^3 . Is it true that lines *PQ*, where $P \in \ell_1, Q \in \ell_2$, sweep the whole space?

LA1 \diamond **2.** Find a basis of the vector space $V = \{p(x) \in \mathbb{R}_4[x] \mid p'(5) = 0\}$.

LA1<3. Find a dimension and a basis of the vector space

(a) of all symmetric matrices $A \in Mat_n(\mathbb{R})$.

(b) of all skew-symmetric matrices $A \in Mat_n(\mathbb{R})$.

(c) $\mathfrak{sl}_n(\mathbb{R}) = \{A \in \operatorname{Mat}_n(\mathbb{R}) \mid \operatorname{tr} A = 0\}.$

LA1 \diamond **4.** Give an example of a finite dimensional space *V* and three its pairwise transversal subspaces *U*, *W*, *T* (that is, intersecting only at the origin) such that dim *U*+dim *W*+dim *T* = dim *V*, but *U* + *W* + *T* \neq *V*.

LA1 \$5. Prove that

$$\dim(U+V) = \dim U + \dim V - \dim(U \cap V).$$

Is it true that

 $\dim(U+V+W) = \dim U + \dim V + \dim W - \dim(U \cap V) - \dim(U \cap W) - \dim(W \cap V) + \dim(U \cap V \cap W)?$

LA16. Suppose dim(U + V) = dim $(U \cap V)$ + 1 for some two vector subspaces $U, V \subset \mathbb{R}^n$. Is it true that U + V is equal to one of the subspaces U, V and $U \cap V$ is equal to another?

LA1^{\$7}. Is it possible that the intersection of the positive orthant

$$\{(x_1, x_2, x_3, x_4) \mid x_1, x_2, x_3, x_4 \ge 0\} \subset \mathbb{R}^4$$

with some 2-dimensional plane is a square?

LA1\diamond8. Let *V* be a vector space of dimension *n* over the finite field \mathbb{F}_q of *q* elements. How many

(a) vectors (b) bases (c) *k*-dimensional subspaces are there in *V*?

LA1 \diamond **9.** Let *V* be an affine space of dimension *n* over the finite field \mathbb{F}_q of *q* elements. How many *k*-dimensional affine subspaces are there in *V*?

LA1•10. For which $c \in \mathbb{R}$ the hyperplane $\sum x_i = c$ intersects with

(a) the three dimensional cube $I^3 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid |x_j| \le 1 \forall j\}$?

(b) the four dimensional cube $I^4 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid |x_i| \le 1 \forall j\}$?

Draw all the polygons and polyhedra respectively that are cut from the cube by such hyperplanes.

LA1 \diamond 11. Prove that the vector space of all continuous functions on \mathbb{R} is infinite dimensional.