Affine and Vector Spaces

LA1 \diamond. Suppose ℓ_{1} and ℓ_{2} are skew lines in the space \mathbb{R}^{3}. Is it true that lines $P Q$, where $P \in \ell_{1}, Q \in \ell_{2}$, sweep the whole space?

LA1 $\diamond 2$. Find a basis of the vector space $V=\left\{p(x) \in \mathbb{R}_{4}[x] \mid p^{\prime}(5)=0\right\}$.
LA1 $\diamond 3$. Find a dimension and a basis of the vector space
(a) of all symmetric matrices $A \in \operatorname{Mat}_{n}(\mathbb{R})$.
(b) of all skew-symmetric matrices $A \in \operatorname{Mat}_{n}(\mathbb{R})$.
(c) $\mathfrak{S I}_{n}(\mathbb{R})=\left\{A \in \operatorname{Mat}_{n}(\mathbb{R}) \mid \operatorname{tr} A=0\right\}$.

LA1 $\diamond 4$. Give an example of a finite dimensional space V and three its pairwise transversal subspaces U, W, T (that is, intersecting only at the origin) such that $\operatorname{dim} U+\operatorname{dim} W+\operatorname{dim} T=$ $\operatorname{dim} V$, but $U+W+T \neq V$.

LA1 $\diamond 5$. Prove that

$$
\operatorname{dim}(U+V)=\operatorname{dim} U+\operatorname{dim} V-\operatorname{dim}(U \cap V)
$$

Is it true that

$$
\operatorname{dim}(U+V+W)=\operatorname{dim} U+\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim}(U \cap V)-\operatorname{dim}(U \cap W)-\operatorname{dim}(W \cap V)+\operatorname{dim}(U \cap V \cap W) ?
$$

LA1 $\triangleleft 6$. Suppose $\operatorname{dim}(U+V)=\operatorname{dim}(U \cap V)+1$ for some two vector subspaces $U, V \subset \mathbb{R}^{n}$. Is it true that $U+V$ is equal to one of the subspaces U, V and $U \cap V$ is equal to another?

LA1 \triangleright 7. Is it possible that the intersection of the positive orthant

$$
\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mid x_{1}, x_{2}, x_{3}, x_{4} \geq 0\right\} \subset \mathbb{R}^{4}
$$

with some 2-dimensional plane is a square?
LA1 \diamond. Let V be a vector space of dimension n over the finite field \mathbb{F}_{q} of q elements. How many
(a) vectors
(b) bases
(c) k-dimensional subspaces
are there in V ?
LA1 $\diamond 9$. Let V be an affine space of dimension n over the finite field \mathbb{F}_{q} of q elements. How many k-dimensional affine subspaces are there in V ?

LA1 $\diamond \mathbf{1 0}$. For which $c \in \mathbb{R}$ the hyperplane $\sum x_{j}=c$ intersects with
(a) the three dimensional cube $I^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}| | x_{j} \mid \leq 1 \forall j\right\}$?
(b) the four dimensional cube $I^{4}=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}| | x_{j} \mid \leq 1 \forall j\right\}$?

Draw all the polygons and polyhedra respectively that are cut from the cube by such hyperplanes.

LA1 $\diamond 11$. Prove that the vector space of all continuous functions on \mathbb{R} is infinite dimensional.

