Linear Operators - 2

LA6 \diamond. Find the matrix of linear operator P of orthogonal projection $P: \mathbb{R}^{4} \rightarrow U$, where $U=\left\{x \in \mathbb{R}^{4} \mid x_{1}+x_{2}+x_{3}+x_{4}=0\right\}$.

LA6 \diamond 2. Is it true that every matrix is conjugate to its transpose matrix?
LA6 \diamond 3. Give an example of a nonidentical operator without a cyclic ${ }^{1}$ vector.
LA6 $\diamond 4$. Find the degree of the minimal polynomial of a square matrix of rank 1 .
LA6 $\triangleleft 5$. Suppose that the characteristic polynomial of a linear operator $F: V \rightarrow V$ is irreducible and has a degree d. Show that $\operatorname{dim} V=d$ and for every $v \in V \backslash\{0\}$ vectors $\left\{v, F v, F^{2} v, \ldots, F^{d-1} v\right\}$ make up the basis of V.

LA6 \diamond 6. Is it true that operator $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is nilpotent iff $\operatorname{tr} F^{k}=0$ for all $1 \leq k \leq n$?
LA6 \diamond 7. Let the degree of the minimal polynomial of a linear operator $F: V \rightarrow V$ is equal to $\operatorname{dim} V$. Is it true that every operator permutable with F is a polynomial of F ?

LA6 $\diamond 8$. Linear operator $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ has a matrix with numbers $\lambda_{1}, \ldots, \lambda_{n}$ on the secondary diagonal and zeros in other places. When it can be diagonalized over \mathbb{R} ?

LA6 $\diamond 9$. Prove that for any positive definite symmetric linear operator A there is a unique positive definite symmetric linear operator B such that $A=B^{2}$.

LA6 \vee 10. (Polar Decomposition) Prove that each invertible operator A in a Euclidean space can be decomposed in so called 'polar decomposition'

$$
A=S_{1} O_{1}=O_{2} S_{2}
$$

where operators S_{j} are unique positive definite symmetric operators and O_{j} are unique orthogonal operators.

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ vector $v \in V$ is called cyclic for an operator A if $V=\left\langle A^{m} v \mid m \geq 0\right\rangle$

