Linear Operators - 2

LA61. Find the matrix of linear operator *P* of orthogonal projection $P \colon \mathbb{R}^4 \to U$, where $U = \{x \in \mathbb{R}^4 \mid x_1 + x_2 + x_3 + x_4 = 0\}.$

LA6³. Is it true that every matrix is conjugate to its transpose matrix?

LA63. Give an example of a nonidentical operator without a cyclic¹ vector.

LA64. Find the degree of the minimal polynomial of a square matrix of rank 1.

LA6 \diamond **5.** Suppose that the characteristic polynomial of a linear operator $F: V \to V$ is irreducible and has a degree *d*. Show that dim V = d and for every $v \in V \setminus \{0\}$ vectors $\{v, Fv, F^2v, \ldots, F^{d-1}v\}$ make up the basis of *V*.

LA6 \diamond **6.** Is it true that operator $F \colon \mathbb{R}^n \to \mathbb{R}^n$ is nilpotent iff tr $F^k = 0$ for all $1 \le k \le n$?

LA6 \diamond **7.** Let the degree of the minimal polynomial of a linear operator $F: V \rightarrow V$ is equal to dim *V*. Is it true that every operator permutable with *F* is a polynomial of *F*?

LA6 \diamond **8.** Linear operator $F : \mathbb{R}^n \to \mathbb{R}^n$ has a matrix with numbers $\lambda_1, \ldots, \lambda_n$ on the secondary diagonal and zeros in other places. When it can be diagonalized over \mathbb{R} ?

LA6 \diamond **9.** Prove that for any positive definite symmetric linear operator *A* there is a unique positive definite symmetric linear operator *B* such that $A = B^2$.

LA6\lorential10. (*Polar Decomposition*) Prove that each invertible operator *A* in a Euclidean space can be decomposed in so called 'polar decomposition'

$$A = S_1 O_1 = O_2 S_2,$$

where operators S_j are unique positive definite symmetric operators and O_j are unique orthogonal operators.

¹A vector $v \in V$ is called cyclic for an operator A if $V = \langle A^m v \mid m \ge 0 \rangle$