Linear Operators

LA5 $\diamond \mathbf{1}$. Find the matrix of linear operator
(a) of a 2-dimensional rotation on some angle α,
(b) of a 3-dimensional rotation on $2 \pi / 3$ around the line, which is given by equations $x_{1}=x_{2}=x_{3}$ in the standard basis,
(c) $X \mapsto\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) X$ in the space $\operatorname{Mat}_{2}(\mathbb{R})$ with the standard basis.

LA5 \diamond. Suppose $f(t)=f_{1}(t) f_{2}(t)$ is a decomposition of a polynomial $f(t)$ into the product of two relatively prime polynomials and suppose that $f(A)=0$ for some linear operator A. Prove that there exist such basis that

$$
A \simeq\left(\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right)
$$

where $f_{1}\left(A_{1}\right)=f_{2}\left(A_{2}\right)=0$.
LA5 $\diamond 3$. Prove that an eigenspace $V_{\lambda}(A)$ of an operator A is an invariant subspace for each operator B such that $A B=B A$.

LA5 $\diamond 4$. Suppose A, B are some linear operators in the same vector space V. Prove that $f_{A B}(t) \equiv f_{B A}(t)$.

LA5 $\diamond 5$. Suppose $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of some matrix A. Find the eigenvalues of an operator
(a) $X \mapsto A X^{t} A$ in the space $\operatorname{Mat}_{n}(\mathbb{R})$,
(b) $X \mapsto A X A^{-1}$ in the space $\operatorname{Mat}_{n}(\mathbb{R})$.

LA5 $\diamond 6$. Find the Jordan Form of a matrix A and give a geometric description of the corresponding linear operator, if
(a) $A^{2}=E$,
(b) $A^{2}=A$.

LA5 \diamond 7. Find the Jordan Form of a matrix A, if $A^{3}=A^{2}$.

