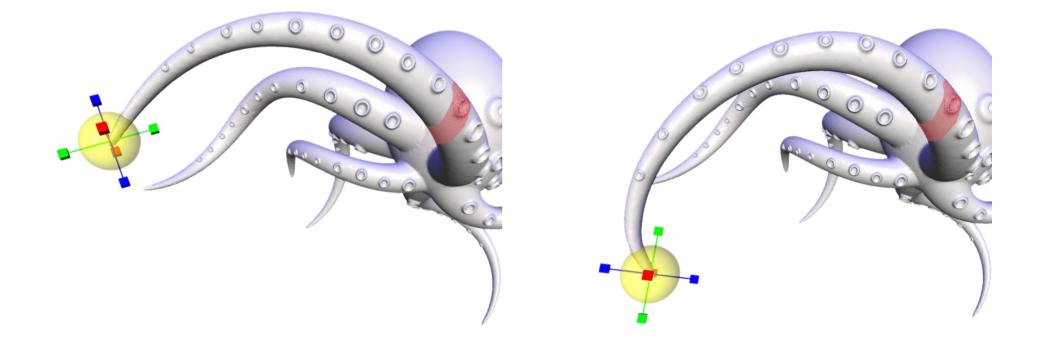
Sorkine et al.



Laplacian Mesh Processing

(includes material from Olga Sorkine, Yaron Lipman, Marc Pauly, Adrien Treuille, Marc Alexa and Daniel Cohen-Or)

Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749

Recap: Laplacian in Euclidean space

- Laplacian (of scalar-valued function):
 - In operator form:

$$\Delta = \left(\frac{\partial^2}{\partial x_1^2}, \frac{\partial^2}{\partial x_2^2}, \dots, \frac{\partial^2}{\partial x_n^2}\right)$$

- Maps scalar field to scalar field

Original function

 $\Delta f = \nabla \cdot \nabla f =$

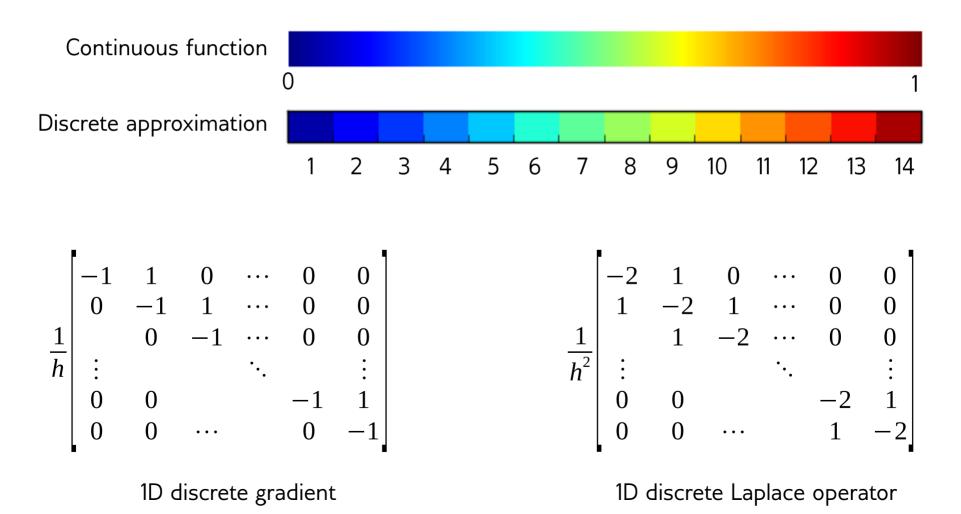
 $\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2}$

Divergence of gradient of f

After applying Laplacian

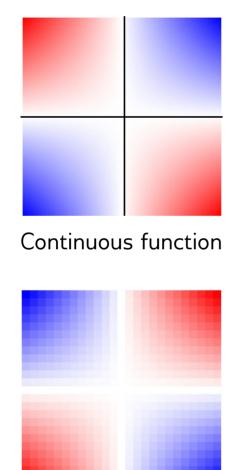
Recap: Laplacian in Euclidean space

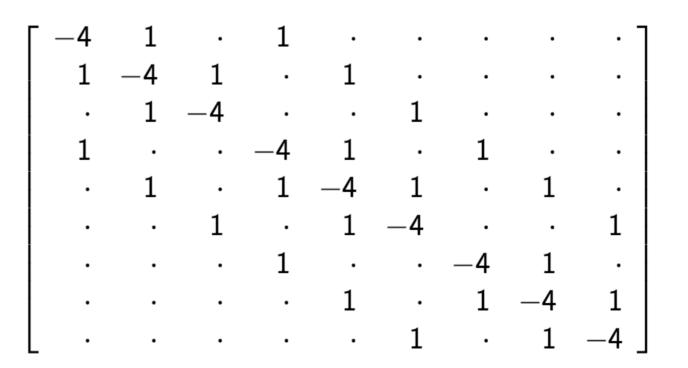
• The Laplacian can be discretized



Laplacian in 2D Euclidean space

• The Laplacian can be discretized



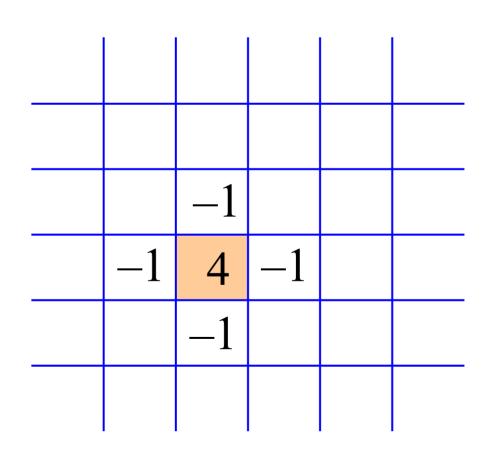


2D discrete Laplace operator

Discrete approximation

Laplacian in 2D Euclidean space

- The Laplacian is computed via differences of a cell from its neighbors
- We can think of the grid as a graph connecting adjacent cells



Thought for the Day #1

Can you express applying the Laplacian (or other differential operator) as a convolution?

- For a general graph, we can compute a similar Laplace operator
 - The function *f* is represented by its values at graph vertices
 - The discrete Laplace operator is applied on graph neighborhoods centred at the vertices
 - If the graph is a grid, we should recover the standard Euclidean Laplacian

- Let G = (V, E) be an undirected graph
- Let $N_1(i)$ represent the 1-ring neighborhood of vertex *i*, that is, $N_1(i) = \{ j \mid (i, j) \in E \}$
- The degree d_i of vertex *i* is $|N_1(i)|$
- Let *D* be the diagonal matrix with $D_{ii} = d_i$

• The adjacency matrix A of G is $A_{ij} = \begin{cases} 1 & (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$

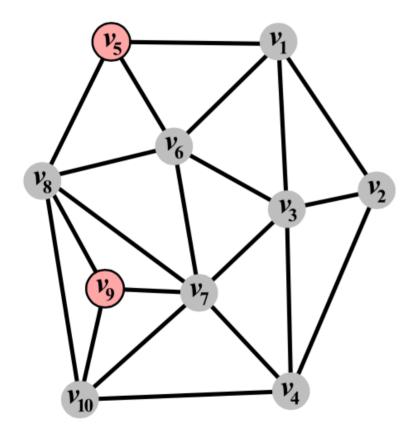
• The (topological) Laplacian matrix *L* of the graph is defined as

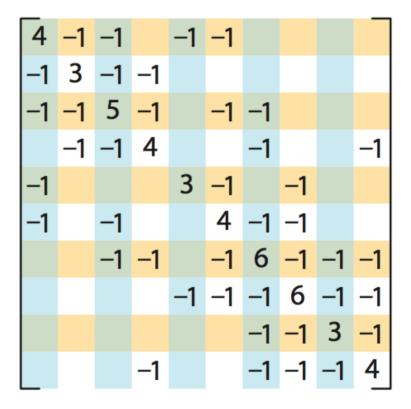
$$L = I - D^{-1}A$$

• Commonly, we can multiply by *D* and consider the symmetric Laplacian $L_s = DL = D - A$ instead

$$(L_s)_{ij} = \begin{cases} d_i & i = j \\ -1 & (i,j) \in E \\ 0 & \text{otherwise} \end{cases}$$

Verify that this gives the correct grid Laplacian



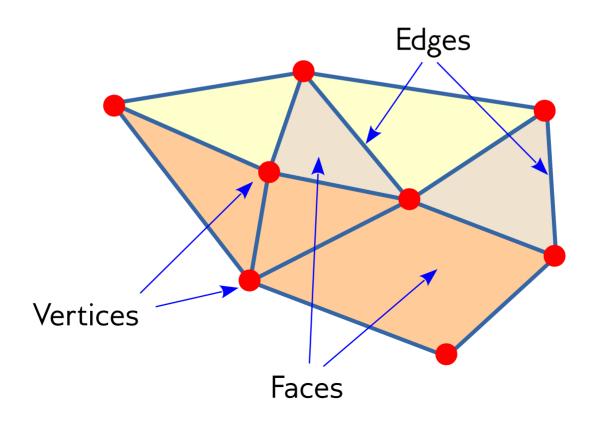


Symmetric Laplacian L_s

Graph

Mesh (Topological) Laplacian

- Recall: a mesh is a graph
- ... so we can compute its topological Laplacian



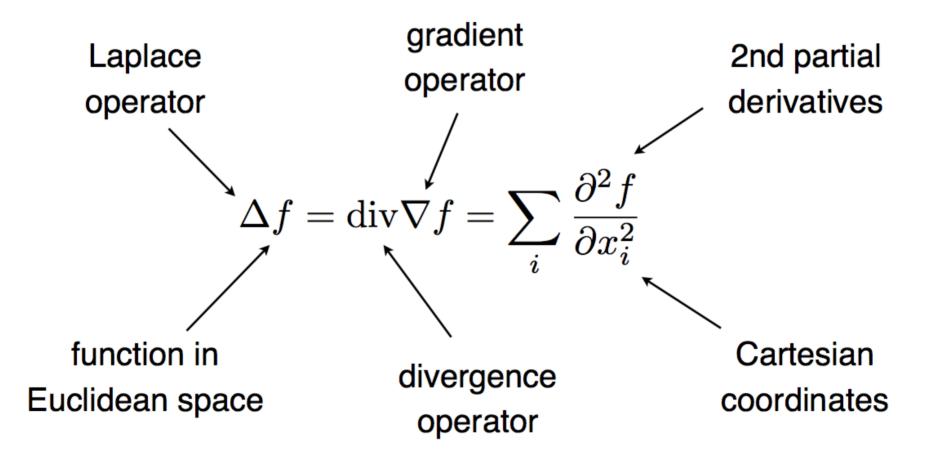
Refining the mesh

- What happens to the Laplacian as we make the mesh finer and finer?
 - The graph serves as a proxy for the surface
 - Eventually, the graph's metric properties should reduce to geometric surface properties

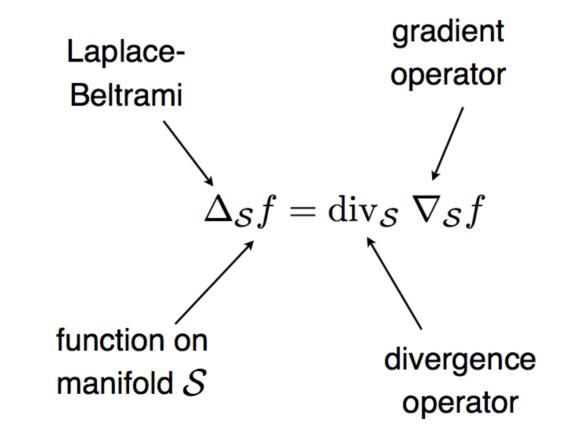
Thought for the Day #2

The *topological* Laplacian does not care about the embedding metric, i.e. the lengths of edges in the graph. How, then, can the Laplacian be sensitive to the *geometry* of the surface?

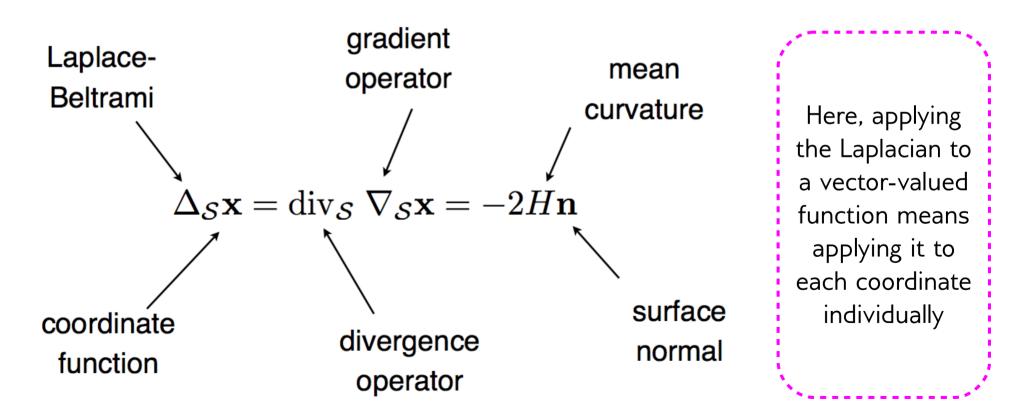
Once again: the Euclidean Laplacian



• Extension of continuous Laplacian to manifolds ("smooth curved surfaces/spaces")



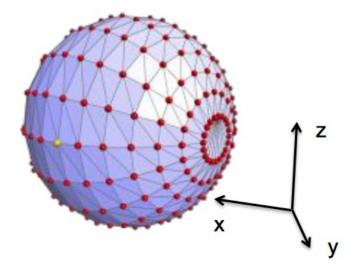
Example: Let x be the coordinate function:
 x(p) = position of p



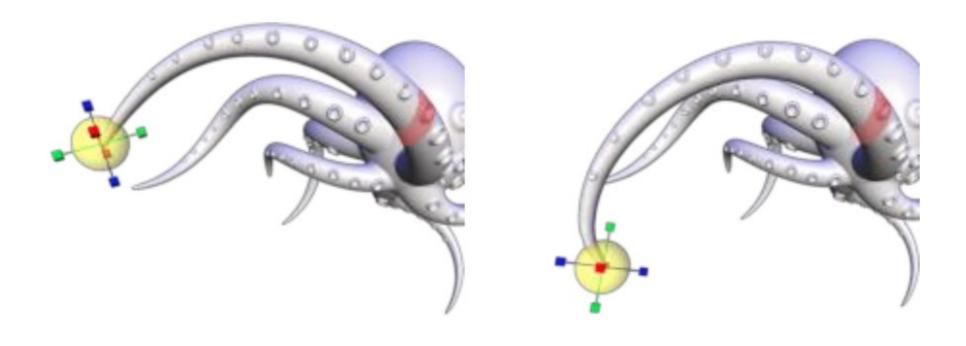
- Just like in 2D Euclidean space, if we know the Laplace-Beltrami operator of the surface, and the function value at a single point, we can solve for the function at all points on the surface
- Why is this important?
 - The LB operator captures global properties of the surface in terms of local properties
 - It expresses a local invariant
 - E.g. for the coordinate function, it expresses the surface in terms of its local curvature and orientation
 - We can modify the properties locally in one small region and recompute the global properties, trying to preserve the local property everywhere else

- The topological Laplacian is an approximation to the discrete Laplace-Beltrami operator
- We shall see better approximations soon

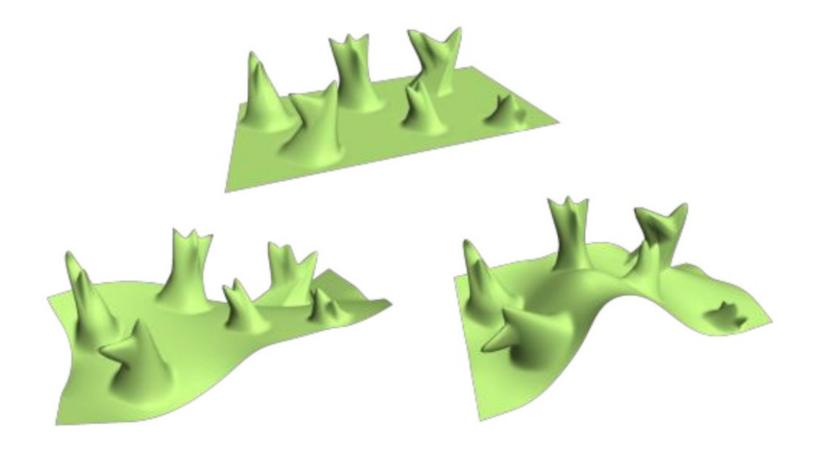
- Meshes are great, but:
 - Geometry is represented in a single *global* coordinate system
 - Single Cartesian coordinate of a vertex dœsn't say much



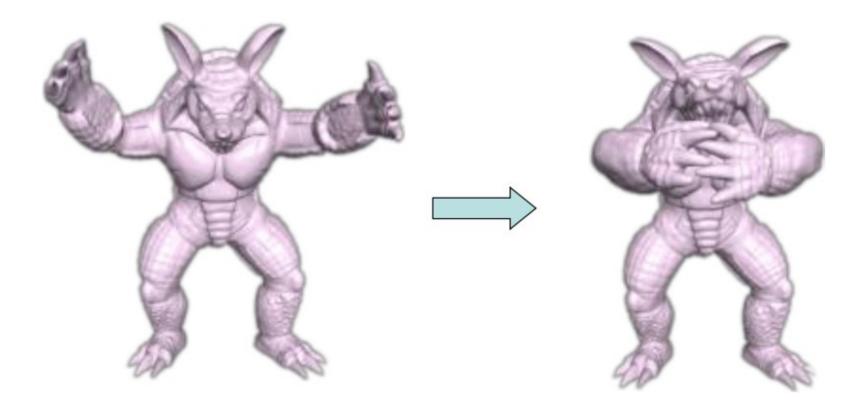
• Meshes are difficult to edit



• Meshes are difficult to edit



• Meshes are difficult to edit

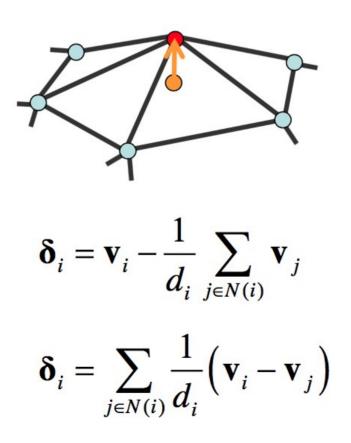


Differential Coordinates

- Represent a point *relative* to its neighbors
- Represent *local detail* at each surface point
- Linear operator takes us from global to differential
- Useful for operations on surfaces where surface details are important

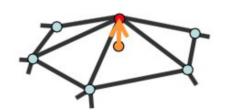
Differential Coordinates

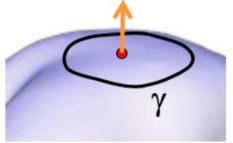
- Detail = surface *smooth*(surface)
- Smoothing = averaging



Connection to the smooth case

- The direction of δ_i approximates the normal
- The magnitude of δ_i approximates the mean curvature



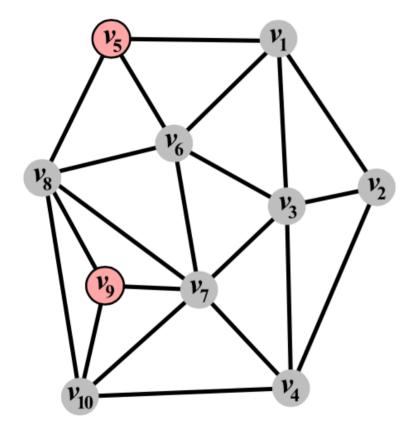


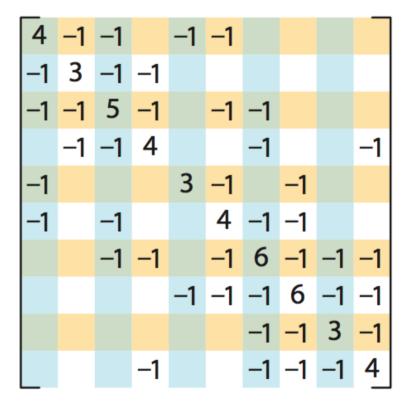
$$\boldsymbol{\delta}_{\mathbf{i}} = \frac{1}{d_i} \sum_{\mathbf{v} \in N(i)} \left(\mathbf{v}_{\mathbf{i}} - \mathbf{v} \right)$$

$$\frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v}_i - \mathbf{v}) ds$$

$$\lim_{len(\gamma)\to 0} \frac{1}{len(\gamma)} \int_{\mathbf{v}\in\gamma} (\mathbf{v}_i - \mathbf{v}) ds = H(\mathbf{v}_i) \mathbf{n}_i$$

Connection to graph Laplacian





Graph

Symmetric Laplacian L_s

Weighting Schemes

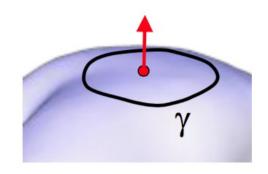
$$\delta_{i} = \frac{\sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_{i} - \mathbf{v}_{j}\right)}{\sum_{j \in N(i)} w_{ij}}$$

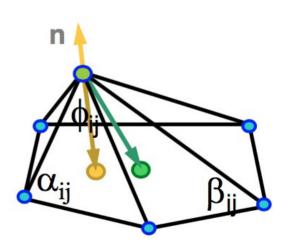
- Ignore geometry δ_{umbrella} : $w_{ij} = 1$
- Integrate over circle around vertex $\delta_{\text{mean value}}: w_{\text{ii}} = \tan \phi_{\text{ii}}/2 + 1$

 $\delta_{\text{mean value}}$: $w_{ij} = \tan \phi_{ij}/2 + \tan \phi_{ij+1}/2$

Integrate over Voronoi
 region of vertex

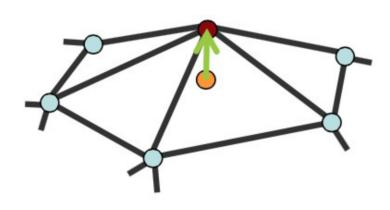
 $\delta_{\text{cotangent}}$: $w_{ij} = \cot \alpha_{ij} + \cot \beta_{ij}$



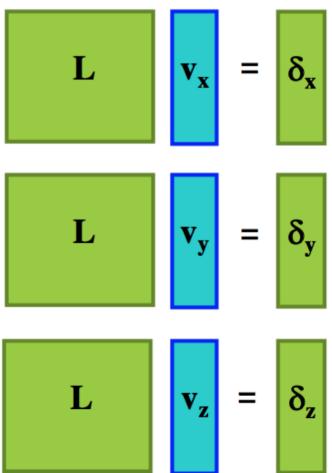


Laplacian Mesh

Vertex positions are represented by Laplacian coordinates (δ_x, δ_y, δ_z)

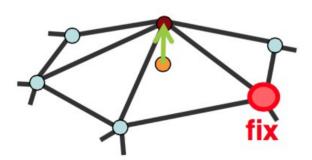


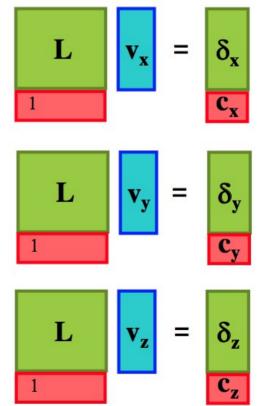
$$\boldsymbol{\delta}_i = \sum_{j \in N(i)} w_{ij} \left(\mathbf{v}_i - \mathbf{v}_j \right)$$



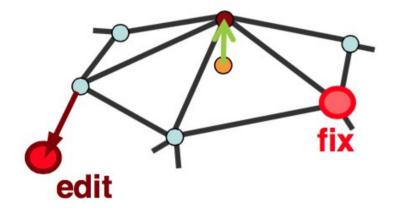
Basic properties

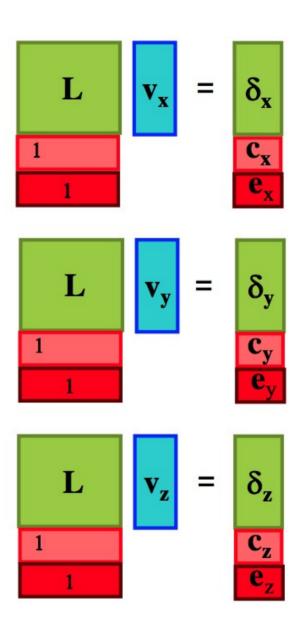
- rank(L) = n c (n 1 for connected meshes)
- We can reconstruct the xyz geometry from δ upto translation



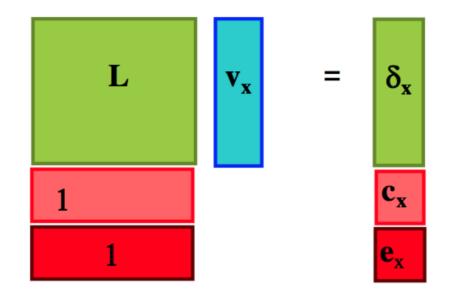


Reconstruction





Reconstruction



$$\widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \left(\left\| L\mathbf{x} - \boldsymbol{\delta}_{x} \right\|^{2} + \sum_{s=1}^{k} \left| x_{k} - c_{k} \right|^{2} \right)$$

Reconstruction

$$L \qquad v_x = \delta_x$$

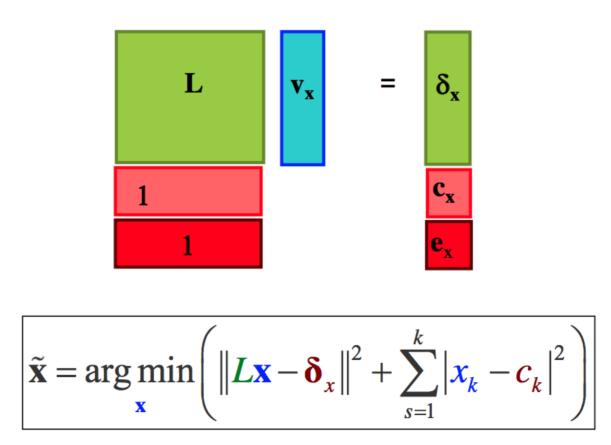
$$\frac{1}{1} \qquad c_x$$

 $\mathbf{A} \mathbf{x} = \mathbf{b}$

Normal Equations: $A^{T}A = A^{T}b$ $x = (A^{T}A)^{-1} A^{T}b$ compute once

Cool underlying idea

• Mesh vertices are defined by the minimizer of an objective function

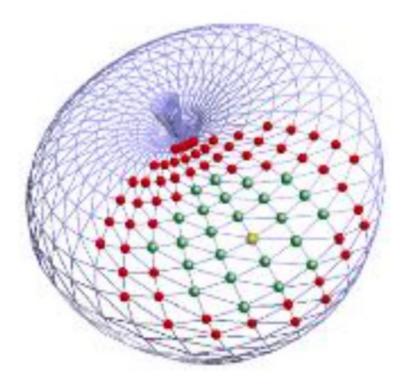


What we have so far

- Laplacian coordinates $\delta = L\mathbf{x}$
 - Local representation
 - Translation invariant
- Linear transition from δ to xyz
 - Can constrain one or more vertices
 - Least squares solution

Editing using differential coordinates

- The editing process from the user's point of view
 - First, set ROI, anchors and handle vertex
 - Move handle vertex to perform edit



Editing using differential coordinates

- The user moves the handle and interactively the surface changes
- The stationary anchors are responsible for smooth transition of the edited part to the rest of the mesh
- This is done using increasing weight with geodesic distance in the soft spatial equations

