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Abstract. In this paper we prove that any compact hyperbolic Coxeter 3-polytope con-
tains an edge such that the distance between its framing facets is small enough. The same
holds for every compact Coxeter (n > 3)-polytope that has a 3-dimensional face, which is a
Coxeter polytope itself. Furthermore, we provide some applications of the above result to
classification of stably reflective Lorentzian lattices.
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§ 1. Introduction

One of the main purposes of our paper is to prove that every compact Coxeter polytope P
in hyperbolic 3-space H3 has a 1-dimensional edge E such that the distance between its
framing facets (i.e. codimension 1 faces containing the vertices of E but not E itself) is
small enough. As a simple consequence, the same holds for every compact Coxeter (n > 3)-
polytope that has a 3-dimensional face, which is a Coxeter polytope itself. In these cases,
a part of P bounded by framing facets and facets containing E will be called a small ridge
of P .

Furthermore, we show that a geometric analysis of such small ridges of Coxeter polytopes
can be a very useful tool for classification of arithmetic hyperbolic reflection groups and
reflective Lorentzian lattices.

Recall that Coxeter polytopes (i.e. those whose bounding hyperplanes Hi and Hj either
do not intersect or form a dihedral angle of π/nij, where nij ∈ Z, nij ≥ 2) are fundamental
domains for discrete groups generated by reflections in hyperplanes in spaces of constant
curvature. Finite volume Coxeter polytopes in En and Sn were classified by Coxeter himself
in 1933 [16]. In 1967, Vinberg [39] developed his theory of hyperbolic reflection groups,
and, in particular, proved an arithmeticity criterion for finite covolume hyperbolic reflection
groups. It is known (cf. [44, 32, 2]) that there are only finitely many maximal arithmetic
hyperbolic reflection groups in all dimensions n ≥ 2 and they can exist in Hn only for n < 30.

In order to formulate the main results of our paper, we introduce some notation. Let P
be a compact acute-angled (i.e. those whose dihedral angles are ≤ π/2) polytope in Hn, E
an edge of P , F1, . . . , Fn−1 the facets of P containing E, Fn and Fn+1 the framing facets
of E. A part of P bounded by facets F1, . . . , Fn+1 is called a ridge associated with E, and
the number cosh ρ(Fn, Fn+1) is its width (here ρ( · , · ) is the hyperbolic metric). Every ridge
corresponds to a set α = {αij}1, where αij is the angle between the facets Fi and Fj.

Theorem A. Every compact Coxeter polytope in the hyperbolic 3-space H3 contains a
ridge of width less than tα, where tα is the number depending on the set α only, and

max
α
{tα} = t(π/5,π/3,π/3,π/2,π/2) < 5.75.

1In [21], the ridge associated to the edge E was called the ridge of type α.
1
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Corollary 1. Let P ⊂ Hn≥4 be a compact Coxeter polytope, and let P ′ be a 3-dimensional
face of P , which is a Coxeter polytope itself 2. Then P has a ridge of width < 5.75.

In order to classify reflective Lorentzian lattices and to prove finiteness of arithmetic
hyperbolic reflection groups, Nikulin proved3 (cf. [27, Lemma 3.2.1] and the proof of [29,
Theorem 4.1.1]) that every finite volume acute-angled polytope in Hn has a facet F such
that cosh ρ(F1, F2) ≤ 7 for any facets F1 and F2 of P adjacent to F . It implies that every
compact (even finite volume) acute-angled polytope P ⊂ Hn contains a ridge of width ≤ 7
(for the case n = 3 cf. [8, Prop. 2.1]).

Remark 1. The result in Theorem A is essentially new. An explicit formula for tα is
available in Theorem 3.1. This new bound tα is much more efficient than Nikulin’s estimate4.

Remark 2. In a recent paper by the author, it was shown that every compact arithmetic
Coxeter polytope in H3 with ground field Q contains a ridge of width < 4.14, cf. [8, Theorem
1.1], however, due to the small technical mistake the correct bound should be 4.98. We shall
discuss it in § 6. Notice that Theorem A is much more general, since arithmetic Coxeter
polytopes in H3 with ground field Q can have dihedral angles π/2, π/3, π/4, and π/6 only.

We shall say that a ridge E in a compact acute-angled polytope P is right-angled if
αij = π/2 for every 1 ≤ i < j ≤ n+ 1.

Theorem B. Let P be a compact Coxeter polytope in Hn≥3, O the interior point of P ,
and let E be the outermost edge from O. If an associated ridge E is right-angled then it has
width < 2. In particular, any compact right-angled Coxeter polytope has a ridge of width < 2.

A Lorentzian lattice L is said to be reflective if its automorphism group is up to finite
index genereted by reflections, and stably reflective, if the same group is up to finite in-
dex generated by stable reflections. For the detailed discussion and precise definitions of
arithmetic hyperbolic reflection groups and reflective Lorentzian lattices see § 5.

In order to formulate the third main result of our paper, we introduce some notation:

1) [C] is a quadratic lattice whose inner product in some basis is given by a symmetric
matrix C;

2) d(L) := detC is the discriminant of the lattice L = [C];
3) L⊕M is the orthogonal sum of the lattices L and M .

Theorem C. Every maximal stably reflective Lorentzian lattice L of signature (3, 1) over
Z[
√

2] is isomorphic to one of the following list:

2In [9], Bogachev and Kolpakov proved that each face of a quasi-arithmetic Coxeter polytope, which is
itself a Coxeter polytope, is also quasi-arithmetic, and also provided a sufficient condition for a codimension
1 face to be arithmetic. A large number of Coxeter polytopes and their faces was studied, using a computer
program PLoF [10]. It turns out that it is a very usual situation that a Coxeter polytope has many faces,
which also are Coxeter polytopes. This means that a condition in Corollary 1 is not so unnatural.

3We present this assertion in a form convenient for us, although it was not formulated in this way anywhere.
In Nikulin’s papers, the lengths squared of the facet normals are equal to (−2) and, therefore, his bound
appears in the form (δ, δ′) ≤ 14.

4The author used it (cf. [8]) in order to classify stably reflective Lorentzian lattices over Z of signature
(3, 1). Using Nukulin’s result, one gets around 1000 candidate lattices to be combed through and checked
for reflectivity, while using tα leaves us with no more than 50 candidates.
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No. L # facets d(L)

1 [−1−
√

2]⊕ [1]⊕ [1]⊕ [1] 5 −1−
√

2

2 [−1− 2
√

2]⊕ [1]⊕ [1]⊕ [1] 6 −1− 2
√

2

3 [−5− 4
√

2]⊕ [1]⊕ [1]⊕ [1] 5 −5− 4
√

2

4 [−11− 8
√

2]⊕ [1]⊕ [1]⊕ [1] 17 −11− 8
√

2

5 [−
√

2]⊕ [1]⊕ [1]⊕ [1] 6 −
√

2

6

 2 −1 −
√

2

−1 2
√

2− 1

−
√

2
√

2− 1 2−
√

2

⊕ [1] 6 −
√

2

7 [−7− 5
√

2]⊕ [1]⊕ [1]⊕ [1] 5 −7− 5
√

2

(Here, “# facets” denotes the number of facets of the fundamental Coxeter polytope for the
maximal arithmetic hyperbolic reflection subgroup Or(L), preserving L.)

The author hopes that analysing small ridges can become a useful tool for classifying not
only stably reflective Lorentzian lattices, but reflective lattices in general.

The paper is organised as follows. In § 2 we provide some preliminary results. Then, § 3
is devoted to the proof of Theorem A (the proof of Corollary 1 is presented in § 3.3) and § 4
is devoted to the proof of Theorem B.

The proof of Theorem A is based on Theorem 2.1 (where an explicit upper bound for
the length of the outermost edge of a compact acute-angled polytope in H3 is obtained)
and Theorem 3.1 (with an explicit formula for tα). A more detailed plan of the proof of
Theorem A is described in § 3.2.

Some definitions and facts concerning arithmetic hyperbolic reflection groups and reflective
Lorentzian lattices are collected in § 5. Finally, § 6 is a description of applications of
Theorem A to classication of stably reflective Lorentzian lattices and § 7 contains the proof
of Theorem C.

Acknowledgments. The author is grateful to Daniel Allcock and Sasha Kolpakov for valu-
able discussions, helpful remarks and suggestions, and to Stepan Alexandrov for remarks and
corrections. The author is also thankful to Institut des Hautes Études Scientifiques — IHES,
and especially to Fanny Kassel, for their hospitality while this work was carried out. This
work was supported by the grant of RFBR according to the research project 18-31-00427.

§ 2. Preliminaries

2.1. Hyperbolic Lobachevsky space and convex polytopes. Let En,1 be the (n+ 1)-
dimensional pseudo-Euclidean real Minkowski space equipped with an inner product

(x, y) = −x0y0 + x1y1 + . . .+ xnyn

of signature (n, 1). A vector model of the n-dimensional hyperbolic Lobachevsky space Hn is
the above component of the standard hyperboloid lying in the future light cone:

Hn = {x ∈ En,1 | (x, x) = −1, x0 > 0}.
The points of Hn are called the proper points. The points at infinity (or on the boundary
∂Hn) in this model correspond to isotropic one-dimensional subspaces of En,1, this is, such
vectors x that (x, x) = 0.

The hyperbolic metric ρ is given by

cosh ρ(x, y) = −(x, y).
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Let On,1(R) be the group of orthogonal transformations of the space En,1, and let POn,1(R)
be its subgroup of index 2 preserving Hn. The group POn,1(R) ' Isom(Hn) is the isometry
group of the hyperbolic n-space Hn.

Suppose that e ∈ En,1 is a unit vector (i.e. (e, e) = 1). Then the set

He = {x ∈ Hn | (x, e) = 0}

is a hyperplane in Hn, and it divides the entire space into half-spaces

H−e = {x ∈ Hn | (x, e) ≤ 0}, H+
e = {x ∈ Hn | (x, e) ≥ 0}.

An orthogonal transformation which is given by the formula

Re(x) = x− 2(e, x)e,

is called the reflection in hyperplane He, which is called the mirror of Re.

Definition 2.1. A convex polytope in Hn is an intersection of finitely many half-spaces
that has non-empty interior. A generalized convex polyhedron is an intersection (with non-
empty interior) of a family (possibly infinite) of half-spaces such that any ball intersects only
finitely many of their boundary hyperplanes.

Definition 2.2. A generalized convex polyhedron is said to be acute-angled if all its dihe-
dral angles do not exceed π/2. A generalized convex polyhedron is called a Coxeter polyhedron
if all its dihedral angles are of the form π/k, where k ∈ {2, 3, 4, . . . ,+∞}.

It is known that the fundamental domains of discrete reflection groups are generalized
Coxeter polyhedra (see [39, 45]).

A convex polytope has finite volume if and only if it is equal to the convex hull of finitely
many points of the closure Hn = Hn ∪ ∂Hn. If a polytope is compact then it is a convex hull
of finitely many proper points of Hn.

It is also known that compact acute-angled polytopes and, in particular, compact Coxeter
polytopes in Hn are simple, that is, every vertex belongs to exactly n facets (and n edges).
This fact will be important for the proof of Corollary 1.

2.2. Bounds for the length of the outermost edge for a compact acute-angled
polytope in H3. In this subsection P denotes a compact acute-angled polytope in the three-
dimensional Lobachevsky space H3. Following Nikulin [29, Theorem 4.1.1], we consider an
interior point O in P . Let E be the outermost5 edge from it and V1 and V2 be the vertices
of E.

Let E1 and E3 be the edges of the polytope P outgoing from the vertex V1 and let E2

and E4 be the edges outgoing from V2 such that the edges E1 and E2 lie in the face F1. The
length of the edge E is denoted by a, and the plane angles between the edges Ej and E are
denoted by αj (see Figure 1).

Denote by V1I, V2I, V1J , V2J the bisector of angles α1, α2, α3, α4, respectively. Let hI
and hJ be the distances from the points I and J to the edge E.

The next theorem was proved by the author (Bogachev, 2019, [8, Theorem 2.1]), but we
should note that the statement is slightly corrected.

5In an acute-angled polytope, the distance from the interior point to the face (of any dimension) is equal
to the distance to the plane of this face.
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Figure 1. The outermost edge

Theorem 2.1. If hJ 6 hI , then the length of the outermost edge satisfies the inequality

a < arcsinh

(
cos(α12/2)

tan(α3/2)

)
+ arcsinh

(
cos(α12/2)

tan(α4/2)

)
.

Proof. See [8, Theorem 2.1] and note that tanh(log(cot(α12/4))) = cos(α12/2). �

Let us introduce the following notation:

Fi,j(α) := arcsinh

(
cos
(
α12

2

)
tan
(
αi

2

) )+ arcsinh

(
cos
(
α12

2

)
tan
(αj

2

) ) .
Corollary 2. The following inequality holds:

cosh a < max{coshF1,2(α), coshF3,4(α)}.

2.3. Auxiliary lemmas.

Lemma 2.1. The following relations are true:
(i) α12 + α23 + α13 > π, α12 + α24 + α14 > π;
(ii)

cosα1 =
cosα23 + cosα12 · cosα13

sinα12 · sinα13

, cosα2 =
cosα24 + cosα12 · cosα14

sinα12 · sinα14

,

cosα3 =
cosα13 + cosα12 · cosα23

sinα12 · sinα23

, cosα4 =
cosα14 + cosα12 · cosα24

sinα12 · sinα24

.

Proof. See [8, Lemma 2.1]. �

Lemma 2.2. The following expression for coshFi,j(α) holds:

2 cos2
(
α12
2

)
cos
(
αi
2

)
cos
(αj

2

)
+ 2
√

cos2
(
α12
2

)
cos2

(
αi
2

)
+ sin2

(
αi
2

)√
cos2

(
α12
2

)
cos2

(αj

2

)
+ sin2

(αj

2

)
√

1− cosαi
√

1− cosαj
.
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Proof. Using the formula

cosh(arcsinhx+ arcsinh y) = xy +
√

1 + x2
√

1 + y2,

we obtain that

coshFi,j(α) = cosh

(
arcsinh

(
cos
(
α12
2

)
tan

(
αi
2

) )+ arcsinh

(
cos
(
α12
2

)
tan

(αj

2

) )) =

=
cos2

(
α12
2

)
cos
(
αi
2

)
cos
(αj

2

)
+
√

cos2
(
α12
2

)
cos2

(
αi
2

)
+ sin2

(
αi
2

)√
cos2

(
α12
2

)
cos
(αj

2

)
+ sin2

(αj

2

)
sin
(
αi
2

)
sin
(αj

2

) =

=
2 cos2

(
α12
2

)
cos
(
αi
2

)
cos
(αj

2

)
+ 2
√

cos2
(
α12
2

)
cos2

(
αi
2

)
+ sin2

(
αi
2

)√
cos2

(
α12
2

)
cos2

(αj

2

)
+ sin2

(αj

2

)
√

1− cosαi
√

1− cosαj
.

While transforming the expressions above, we use the half-angle formulae, where appro-
priate. �

§ 3. Proof of Theorem A

3.1. Explicit formula for tα. Let E be the outermost edge of a compact Coxeter polytope
P . Consider the set of unit outer normals (u1, u2, u3, u4) to the facets F1, F2, F3, F4. Note
that this vector system is linearly independent. Its Gram matrix is

G(u1, u2, u3, u4) =


1 − cosα12 − cosα13 − cosα14

− cosα12 1 − cosα23 − cosα24

− cosα13 − cosα23 1 −T
− cosα14 − cosα24 −T 1

 ,

where T = |(u3, u4)| = cosh ρ(F3, F4) is width of E in the case where the facets F3 and
F4 diverge. Recall that otherwise T ≤ 1, and we do not need to consider this case sep-
arately. Let us denote by Gij the algebraic complements of the elements of the matrix
G = G(u1, u2, u3, u4).

We denote by F (α) the corresponding Fi,j(α), depending on hJ ≤ hI or hI ≤ hJ (see
Theorem 2.1).

Theorem 3.1. A small ridge associated with the edge E of a compact Coxeter polytope
P ⊂ H3 has width T less than

tα =
coshF (α) ·

√
G33G44 − g(α)

sin2 α12

,

where

g(α) := cosα12 cosα13 cosα24 + cosα12 cosα14 cosα23 + cosα13 cosα14 + cosα23 cosα24.

Proof. Let (u∗1, u
∗
2, u
∗
3, u
∗
4) be the basis dual to the basis (u1, u2, u3, u4). Then u∗3 and

u∗4 determine the vertices V2 and V1 in the Lobachevsky space. Indeed, the vector v1 cor-
responding to the point V1 ∈ H3 is uniquely determined (up to scaling) by the conditions
(v1, u1) = (v1, u2) = (v1, u3) = 0. Note that the vector u∗4 satisfies the same conditions.
Therefore, the vectors v1 and u∗4 are proportional. Hence,

cosh a = cosh ρ(V1, V2) = −(v1, v2) = − (u∗3, u
∗
4)√

(u∗3, u
∗
3)(u

∗
4, u
∗
4)
.
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It is known that G(u∗1, u
∗
2, u
∗
3, u
∗
4) = G(u1, u2, u3, u4)

−1, whence it follows that cosh a can
be expressed in terms of the algebraic complements Gij (recall that Gij is computed with a
sign (−1)i+j) of the elements of the matrix G = G(u1, u2, u3, u4):

cosh a = − (u∗3, u
∗
4)√

(u∗3, u
∗
3)(u

∗
4, u
∗
4)

=
G34√
G33G44

.

Theorem 2.1 implies that

cosh a < coshF (α).

It follows that
G34√
G33G44

< coshF (α). (1)

For every α, we obtain in this way a linear inequality with respect to the number T . Indeed,

G34 = T (1− cos2 α12) + g(α) = T · sin2 α12 + g(α) < coshF (α) ·
√
G33G44,

which finishes the proof. �

3.2. Proof of Theorem A. In order to prove Theorem A it remains to show that

max
α

tα = t(π/5,π/3,π/3,π/2,π/2) < 5.75.

Taking into account Lemma 2.1, (i), we can see that only one or two angles αij can be
equal to π/k, where k ≥ 6. Moreover, any triple of angles around one of the vertices of the
edge E contains π/2.

The plan of the proof. Without loss of generality, our plan consists of separate consid-
ering of the following cases:

(1) α12 = π
k
, where k ≥ 6. Due to Proposition 3.1, tα < 2

√
2.

(2) α13 = π
k
, where k ≥ 6. It implies by Lemma 2.1, (i) that α12 = π/2. By Proposi-

tion 3.2, we have tα < 5.
(3) no αij is equal to π/k for k ≥ 6, i.e. αij = π/2, π/3, π/4, π/5. This gives us 67

different possibilities for a small ridge, and 43 of them are combined by the fact that
α12 = π/2. In this case, we use Proposition 3.2 again: tα < 5.

(4) It remains to calculate tα for 24 different types of a small ridge. It was done using the
program SmaRBA (Small Ridges, Bounds and Applications, see [11]) written in Sage

computer algebra system. The result is presented as the list of Coxeter diagrams in
Table 1.

In order to obtain upper bounds for tα, we shall use Theorem 3.1 and (see Corollary 2)

a < F (α) = max{F1,2(α), F3,4(α)}.

Remark 3. Note that if one computes bounds for a large (but finite) number of ridges
then it can be much more efficient to verify in each case whether hJ ≤ hI or hI ≤ hJ .

Proposition 3.1. Suppose that α12 = π
k

, where k ≥ 6. Then tα < 2
√

2.

Proof. Due to Lemma 2.1, (i), we can see that all other αij = π/2 and α =
(
π
k
, π
2
, π
2
, π
2
, π
2

)
.

In this case we have that F (α) = F1,2(α) = F3,4(α) and

g
(π
k
,
π

2
,
π

2
,
π

2
,
π

2

)
= 0,

√
G33G44 = sin2

(π
k

)
.
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We have

coshF
(π
k
,
π

2
,
π

2
,
π

2
,
π

2

)
= cosh

(
2 arcsinh

(
cos(π/2k)

tan(π/4)

))
= 2 cos

( π
2k

)√
1 + cos2

( π
2k

)
.

It implies that

tα =
2 cos

(
π
2k

)√
1 + cos2

(
π
2k

)
sin2

(
π
k

)
sin2

(
π
k

) = 2 cos
( π

2k

)√
1 + cos2

( π
2k

)
< 2
√

2.

�

Now we can assume that α12 ≥ π/5. Only one or two angles among remaining αij can
be equal to π/k, where k ≥ 6. Without loss of generality, we suppose that α13 = π

k
, where

k ≥ 6. Then α12 = α23 = π/2.
If no αij is equal to π/k for k ≥ 6, then these angles can equal only π/2, π/3, π/4, and

π/5. Recall that any triple of angles around one of the vertices of the edge E contains π/2.
Thus, we can consider separately the case α12 = π/2.

Proposition 3.2. If α12 = π/2, then tα < 5.

Proof. We have α =
(
π
2
, α13, α14, α23, α24

)
. Let us now compute:√

G33G44 =
√

1− cos2 α13 − cos2 α23

√
1− cos2 α14 − cos2 α24. (2)

Notice that (by Lemma 2.1)

cosα1 =
cosα23

sinα13

, cosα2 =
cosα24

sinα14

,

cosα3 =
cosα13

sinα23

, cosα4 =
cosα14

sinα24

.

Using the above expressions and Lemma 2.2, we have

tα ≤ coshF1,2(α)
√

sin2 α13 − cos2 α23

√
sin2 α14 − cos2 α24

≤
cos
(
α1
2

)
cos
(
α2
2

)
√

1− cosα1
√

1− cosα2

√
sin2 α13 − cos2 α23

√
sin2 α14 − cos2 α24 +

+

√
1 + sin2

(
α1
2

)√
1 + sin2

(
α2
2

)
√

1− cosα1
√

1− cosα2

√
sin2 α13 − cos2 α23

√
sin2 α14 − cos2 α24 ≤

≤
cos
(
α1
2

)
cos
(
α2
2

)√
sinα13 sinα14√

sinα13 − cosα23

√
sinα14 − cosα24

√
sin2 α13 − cos2 α23

√
sin2 α14 − cos2 α24 +

+

√
1 + sin2

(
α1
2

)√
1 + sin2

(
α2
2

)√
sinα13 sinα14

√
sinα13 − cosα23

√
sinα14 − cosα24

√
sin2 α13 − cos2 α23

√
sin2 α14 − cos2 α24 ≤

≤ cos
(α1

2

)
cos
(α2

2

)√
sinα13 + cosα23

√
sinα14 + cosα24 +

+

√
1 + sin2

(α1

2

)√
1 + sin2

(α2

2

)√
sinα13 + cosα23

√
sinα14 + cosα24 <

<
√

2
√

2 +

√
3√
2

√
3√
2

√
2
√

2 = 5.

The last inequality holds since αi ≤ π/2, and, therefore, sin(αi/2) ≤ sin(π/4) = 1/
√

2.
Absolutely the same argument works for tα bounded via coshF3,4(α). �
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tα < 2.5 tα < 2.71 tα < 2.87 tα < 3.29 tα < 3.58 tα < 3.72

tα < 4.07 tα < 3.26 tα < 4.62 tα < 3.08 tα < 4.35 tα < 3.51

tα < 4.87 tα < 2.78 tα < 4.48 tα < 3.62 tα < 4.75 tα < 3.17

tα < 3.82 tα < 4.98 tα < 4.14 tα < 4.21 tα < 5.75 tα < 4.9

Table 1. Coxeter diagrams of the remaining small ridges

F4 F3

F1

F2

tα < 2.87

Figure 2. Coxeter diagtam of a small ridge (π/5, π/2, π/2, π/2, π/2).

After that, it remains to calculate tα for 24 different types of a small ridge. It was done
using the program SmaRBA [11] written in a computer algebra system Sage. The result is
presented in Table 1 as the list of Coxeter diagrams for facets F1, F2, F3, F4. The facets
F3 and F4 will be connected by a dotted line, and the whole diagram will be signed by
the relevant bound: tα < constant. The numbering of the facets of each diagram is the
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same as in Fig. 2, which shows an example of what the ridge diagram looks like when
α = (π/5, π/2, π/2, π/2, π/2). We see from this picture that t(π/5,π/2,π/2,π/2,π/2) < 2.87.

The numbers given in Table 1 were calculated by SmaRBA [11] with accuracy up to eight dec-
imal places. We show them rounded up to the nearest hundredth, which is quite enough for
our purposes. For example, the maximal found number approximately equals 5.74850431686,
which was rounded up to 5.75.

Thus, combining Propositions 3.1, 3.2, and this list in Table 1, we obtain the proof of
Theorem A. �

3.3. Proof of Corollary 1. Let P be a compact Coxeter polytope in Hn≥4. Suppose that
P ′ is a 3-dimensional face of P , which is itself a Coxeter polytope. Let O be the interior
point of P ′, and E ∈ P ′ be the outermost edge from this point.

Then P ′ has (2-dimensional) facets F1 and F2, framing the edge E, and, by Theorem A,
cosh ρ(F1, F2) ≤ tα < 5.75. Recall that a compact hyperbolic Coxeter polytope P is simple.
This implies that F1 and F2 belong to facets P1 and P2 of P , respectively, where P1 and P2

are also the framing facets for the edge E. Then we have

cosh ρ(P1, P2) ≤ cosh ρ(F1, F2) ≤ tα < 5.75.

�

§ 4. Proof of Theorem B

The distance from the point e0 ∈ Hn, where (e0, e0) = −1, to the plane

Hu1,...,uk := {x ∈ Hn | x ∈ 〈u1, . . . , uk〉⊥, (uj, uj) = 1, 1 ≤ j ≤ k}
can be calculated by the formula

sinh2 ρ(e0, Hu1,...,uk) =
∑
i,j

gijyiyj, (3)

where gij are the elements of the inverse matrix G−1 = G(u1, . . . , uk)
−1, and

yj = −(e0, uj) = − sinh ρ(e0, Hj)

for all 1 ≤ j ≤ k (we assume that (e0, uj) ≤ 0, i.e. e0 ∈ H−uj).
Let P be a compact Coxeter polytope in Hn whose small ridge (associated with the

outermost edge E from some point O ∈ P given by the vector e0 ∈ En,1 such that (e0, e0) =
−1) is right-angled. Let F1, . . . , Fn−1 be the facets of P containing E with unit outer normals
u1, . . . , un−1, and let un and un+1 be the unit outer normals to the framing facets Fn and
Fn+1 containing the vertices of E but not E itself.

Let us consider the following Gram matrix

G(e0, u1, u2, . . . , un+1) =


−1 −y1 . . . −yn −yn+1

−y1 1 0 0 0
...

...
. . .

...
...

−yn 0 0 1 −T
−yn+1 0 0 −T 1

 ,

where

yj = −(e0, uj) = − sinh ρ(e0, Hj), Hj = {x | (x, uj) = 0}.
We can assume that yn ≤ yn+1. The fact that the edge E is the outermost edge from the

point O, gives us the inequalities ρ(O,E) ≥ ρ(O,E ′) for any edge E ′ adjacent to E. Recall
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that E ′ ∈ Hn or E ′ ∈ Hn+1. Assume that E ′ ∈ Hn and E ′ 6∈ Hj. By (3), the distances from
the point O to edges E and E ′ of P satisfy the following:

sinh2 ρ(O,E) = y21 + . . . y2n−1, sinh2 ρ(O,E ′) = y21 + . . .+ y2j−1 + y2j+1 + . . .+ y2n−1 + y2n.

Applying the above consideration to every edge E ′ adjacent to E, we obtain that

yn ≤ yn+1 ≤ y1, y2, . . . , yn−1.

Since n+ 2 vectors e0, e1, . . . , en+1 belong to (n+ 1)-dimensional vector space En,1, then

detG(e0, e1, . . . , en+1) = (y21 + . . .+ y2n−1 + 1)T 2 − 2ynyn+1T − (y21 + . . .+ y2n+1 + 1) = 0,

i.e.,

T =
ynyn+1 +

√
y2ny

2
n+1 + AB

A
,

where
A := y21 + . . .+ y2n−1 + 1, B := y21 + . . .+ y2n+1 + 1.

Therefore,
2ynyn+1 ≤ y2n + y2n+1 < A ≤ B, B/A = 1 + ynyn+1/A < 1.5

and
T < 0.5 +

√
0.25 + 1 + 1 = 2.

�

§ 5. Arithmetic hyperbolic reflection groups and reflective Lorentzian lattices

5.1. Definitions and preliminaries. Suppose that F is a totally real algebraic number
field with the ring of integers A = OF. For convenience we will assume that it is a principal
ideal domain.

Definition 5.1. A free finitely generated A-module L with an inner product of signature
(n, 1) is said to be a Lorentzian lattice if, for each non-identity embedding σ : F → R, the
quadratic space L⊗σ(A) R is positive definite.

Suppose that L is a Lorentzian lattice. It is embedded in the (n + 1)-dimensional real
Minkowski space En,1 = L ⊗id(A) R. We shall take one of the connected components of the
hyperboloid

{v ∈ En,1 | (v, v) = −1} (4)

as a vector model of the n-dimensional hyperbolic Lobachevsky space Hn.
Suppose that O(L) is the group of automorphisms of a lattice L. It is known (cf.

[38, 12, 25]) that its subgroup O′(L) leaving invariant each connected component of the
hyperboloid (4), is a discrete group of motions of the Lobachevsky space with finite vol-
ume fundamental polytope. Moreover, if F = Q and the lattice L is isotropic (that is, the
quadratic form associated with it represents zero), then the quotient space Hn/Γ is a finite
volume non-compact orbifold, and in all other cases it is compact.

Definition 5.2. The groups Γ obtained in the above way and the subgroups of the group
Isom(Hn) that are commensurable6 with them are called arithmetic discrete groups (or lat-
tices) of the simplest type. The field F is called the field of definition (or the ground field) of
the group Γ (and all subgroups commensurable with it).

6Two subgroups Γ1 and Γ2 of some group are said to be commensurable if the group Γ1∩Γ2 is a subgroup
of finite index in each of them.
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A primitive vector e of a Lorentzian lattice L is called a root or, more precisely, a k-root,
where k = (e, e) ∈ A>0 if 2(e, x) ∈ kA for all x ∈ L. Every root e defines an orthogonal
reflection (called a k-reflection if (e, e) = k) in the space L⊗id(A) R

Re : x 7→ x− 2(e, x)

(e, e)
e,

which preserves the lattice L and determines the reflection of the space Hn with respect to
the hyperplane He = {x ∈ Hn | (x, e) = 0}, called the mirror of Re.

Definition 5.3. A reflection Re is called stable if (e, e) | 2 in A.

For example, for F = Q and A = Z, this holds for (e, e) = 1 and (e, e) = 2, i.e., only
1- and 2-reflections are stable, while, for F = Q[

√
2] and A = Z[

√
2], stable are 1-, 2-, and

(2 +
√

2)-reflections. Any primitive vector e ∈ L for which (e, e) | 2 is automatically a root
of the lattice L and of any of its finite extensions.

Let L be a Lorentzian lattice over a ring of integers A. We denote by Or(L) the subgroup
of the group O′(L) generated by all reflections contained in it, and we denote by S(L) the
subgroup of O′(L) generated by all stable reflections.

Definition 5.4. A Lorentzian lattice L is said to be reflective if the index [O′(L) : Or(L)]
is finite, and stably reflective if the index [O(L) : S(L)] is finite.

Remark 4. In [5, 6, 8] stably reflective lattices over Z are called (1,2)-reflective.

Definition 5.5. A Lorentzian Z-lattice L is called 2-reflective if the subgroup O(2)
r (L)

generated by all 2-reflections has a finite index in O′(L).

Note that any 2-reflective lattice is stably reflective. Obviously, a finite extension of any
stably reflective Lorentzian lattice is also a stably reflective Lorentzian lattice.

5.2. State of the art. As mentioned in the introduction, Vinberg [39] started in 1967
a systematic study of hyperbolic reflection groups. He proved an arithmeticity criterion
for finite covolume hyperbolic reflection groups and, in particular, he showed that a discrete
hyperbolic reflection group of finite covolume is an arithmetic group with ground field F if and
only if it is commensurable with a group of the form O′(L), where L is some (automatically
reflective) Lorentzian lattice over a totally real number field F.

In 1972, Vinberg proposed an algorithm (see [40], [42]) that, given a lattice L, enables one
to construct the fundamental Coxeter polytope of the group Or(L) and determine thereby
the reflectivity of the lattice L.

The next important result belongs to several authors.

Theorem 5.1 (see [44, 28, 22, 1, 32, 2]). For each n ≥ 2, up to scaling, there are only
finitely many reflective Lorentzian lattices of signature (n, 1). Similarly, up to conjugacy,
there are only finitely many maximal arithmetic reflection groups in the spaces Hn. Arith-
metic hyperbolic reflection groups and compact Coxeter polytopes do not exist in Hn≥30.

It was also proved that there are no reflective hyperbolic Z-lattices of rank n + 1 > 22
(F. Esselmann, 1996 [17]).

The above results give the hope that all reflective Lorentzian lattices, as well as maximal
arithmetic hyperbolic reflection groups can be classified.
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Here we describe a progress in the problem of classification of reflective Lorentzian lattices.
A more detailed history of the problem can be found in recent survey of Belolipetsky [4].

For the ground field Q: the reflective Loretzian lattices of signature (n, 1) are classified for
n = 2 (V.V. Nikulin, 2000 [31], and D. Allcock, 2011 [3]), n = 4 (R. Sharlau and C. Walhorn,
1989–1993 [36, 51]), n = 5 (I. Turkalj, 2017 [37]) and in the non-compact (isotropic) case for
n = 3 (R. Sharlau and C. Walhorn, 1989–1993 [35, 36]).

A classification of reflective Lorentzian lattices of signature (2, 1) over Z[
√

2] was obtained
by A. Mark in 2015 [23, 24].

Unimodular reflective Lorentzian lattices over Z were classified by Vinberg and Kaplin-
skaja, (1972 and 1978, see [40, 41, 43]). Other classifications of unimodular reflective
Lorentzian lattices over Z[

√
2], Z[(1 +

√
5)/2] and Z[cos(2π/7)], were obtained by Bugaenko

(1984, 1990 and 1992, see [13, 14, 15]).
In 1979, 1981, and 1984 (cf. [26, 28, 30]), Nikulin obtained classification of 2-reflective

Lorentzian Z-lattices of signature (n, 1) for n 6= 3, and Vinberg classified these lattices for
n = 3 (cf. 1998 and 2007, [46, 47]). Finally, the author of this paper obtained (cf. [5, 6, 8]) a
classification of stably reflective anisotropic Lorentzian Z-lattices of signature (3, 1). (They
all turned out to be 2-reflective in this case.)

In all other cases, the classification problem still remains open.

5.3. Methods of testing a lattice for stable reflectivity and non-reflectivity. Recall
that there is Vinberg’s algorithm that constructs the fundamental Coxeter polytope of the
group Or(L). It can be applied to the group of type S(L). However, it will be more efficient
to apply the procedure of Vinberg’s algorithm to the large group Or(L) and to use some
another approach to determine whether L is stably reflective or not.

5.3.1. The method of “bad” reflections. If we can construct the fundamental Coxeter poly-
hedron (or some part of it) of the group Or(L) for some Lorentzian lattice L, then it is
possible to determine whether it is stably reflective. One can consider the group ∆ gener-
ated by the k-reflections that are not stable (we shall call them “bad” reflections) in the sides
of the fundamental polyhedron of the group Or(L). The following lemma holds (see [47]).

Lemma 5.1. A lattice L is stably reflective if and only if it is reflective and the group ∆
is finite.

Actually, to prove that a lattice is not stably reflective, it is sufficient to construct only
some part of the fundamental polyhedron containing an infinite subgroup generated by bad
reflections.

5.3.2. Method of infinite symmetry. Recall that

O′(L) = Or(L) oH,

where H = Sym(P ) ∩ O′(L). If P is of infinite volume and has infinitely many faces, then
the group H is infinite. To determine whether it is infinite or not, one can use the following
lemma proved by V. O. Bugaenko in 1992 (see [15]).

Lemma 5.2. Suppose H is a discrete subgroup of Isom(Hn). Then H is infinite if and
only if there exists a subgroup of H without fixed points in Hn.

How can we find the set of fixed points?
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F Possible values for (u, u) Possible angles # of different ridges max tα
Q 1, 2 π

2
, π

3
, π

4
, π

6
44 4.98

Q[
√

2] 1, 2, 2 +
√

2 π
2
, π

3
, π

4
, π

6
, π

8
58 4.98

Q[
√

3] 1, 2, 2 +
√

3 π
2
, π

3
, π

4
, π

6
, π

12
58 4.98

Q[
√

5] 1, 2 π
2
, π

3
, π

4
, π

5
, π

6
, π

10
99 5.75

Table 2. Some quantities for stably reflective Lorentzian lattices over ground

fields F = Q,Q[
√

2],Q[
√

3],Q[
√

5], i.e. OF = Z,Z[
√

2],Z[
√

3],Z[1+
√
5

2
].

Lemma 5.3 (Bugaenko, see Lemma 3.2 in [15]). Let η be an involutive trasnformation
of a real vector space V . Then the set of its fixed points Fix(η) is generated by vectors
ej + η(ej), where {ej} form a basis of V .

Due to this lemma the proof of non-reflectivity of a lattice is the following. If we know
a part of a polyhedron P for the group Or(L), then we can find a few symmetries of its
Coxeter diagram.

If these symmetries preserve the lattice L, then they generate the subgroup that preserves
P . If this subgroup has no fixed points then Or(L) is of infinite index in O′(L).

§ 6. Classification of stably reflective Lorentzian lattices of signature (3, 1)

6.1. Description of the method. In this section we describe application of Theorem A
or, more precisely, of Theorem 3.1 to classification of stably reflective Lorentzian lattices.

Let now P be the fundamental Coxeter polytope of the group Or(L) for an anisotropic
Lorentzian lattice L of signature (3, 1) over a ring of integers OF of any totally real number
field F. The lattice L is reflective if and only if the polytope P is compact (i. e., bounded)
in H3.

Let E be an edge (of the polytope P ) corresponding to a small ridge of width not greater
than tα. By Theorem A we can ensure that tα < 5.75, however, we shall use a more efficient
way, an explicit formula from Theorem 3.1.

Indeed, for a fixed number field F only finitely many dihedral angles in Coxeter polytopes
are possible. This leaves us only finitely many combinatorial types of a small ridge, and for
each such type one can explicitly compute (see SmaRBA [11]) the respective bound tα. We
present some useful calculations in Table 2.

Remark 5. Due to some technical mistake, the bound tα < 4.14 in [8, Theorem 1.1] is
incorrect (the correct one is tα < 4.98). However the result [8, Theorem 1.2] is still correct.

Let u1, u2 be the roots of the lattice L that are orthogonal to the facets containing the edge
E and are the outer normals of these facets. Similarly, let u3, u4 be the roots corresponding to
the framing facets. We denote these facets by F1, F2, F3, and F4, respectively. If (u3, u3) = k,
(u4, u4) = l, then (by Theorem A)

|(u3, u4)| ≤ 5.75
√
kl. (5)

Since we are solving the classification problem for stably reflective lattices, all roots of L
satisfy the condition (u, u) | 2 in OF . Thus, (u, u) always takes finitely many values (see
Table 2).

In this case we are given bounds on all elements of the matrix G(u1, u2, u3, u4), because all
the facets Fi are pairwise intersecting, excepting, possibly, the pair of faces F3 and F4. But
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Table 3. Unimodular reflective Lorentzian lattices over Q[
√

13] and Q[
√

17].

L n # facets

[−3+
√
13

2
]⊕ [1]⊕ . . .⊕ [1] 2 4

[−3+
√
13

2
]⊕ [1]⊕ . . .⊕ [1] 3 9

[−3+
√
13

2
]⊕ [1]⊕ . . .⊕ [1] 4 40

L n # facets

[−4−
√

17]⊕ [1]⊕ . . .⊕ [1] 2 4

[−4−
√

17]⊕ [1]⊕ . . .⊕ [1] 3 6

[−4−
√

17]⊕ [1]⊕ . . .⊕ [1] 4 20

if they do not intersect, then the distance between these faces is bounded by inequality (5).
Thus, all entries of the matrix G(u1, u2, u3, u4) are integer and bounded, so there are only
finitely many possible matrices G(u1, u2, u3, u4).

The vectors u1, u2, u3, u4 generate some sublattice L′ of finite index in the lattice L. More
precisely, the lattice L lies between the lattices L′ and (L′)∗, and

[(L′)∗ : L′]2 = |d(L′)|.
Hence it follows that |d(L′)| is divisible by [L : L′]2. Using this, in each case we shall find
for a lattice L′ all its possible extensions of finite index.

The resulting list of candidate lattices is verified for reflectivity using Vinberg’s algorithm.
There exist a few software implementations of Vinberg’s algorithms, these are AlVin [18, 19],
for Lorentzian lattices with an orthogonal basis over several ground fields, and VinAl (cf.
[50, 7]) for Lorentzian lattices with an arbitrary basis over Z. Further work on the project

that implements Vinberg’s algorithm for arbitrary lattices over the quadratic fields Z[
√
d] is

being carried out jointly with A. Yu. Perepechko.
We introduce some notation:

1) [C] is a quadratic lattice whose inner product in some basis is given by a symmetric
matrix C;

2) d(L) := detC is the discriminant of the lattice L = [C];
3) L⊕M is the orthogonal sum of the lattices L and M .

The method described above, allows one to obtain the following two facts.

Theorem 6.1 (Bogachev, [8], Th. 1.2). Every stably reflective anisotropic Lorentzian
lattice of signature (3, 1) over Z is either isomorphic to [−7]⊕ [1]⊕ [1]⊕ [1] or [−15]⊕ [1]⊕
[1]⊕ [1], or to an even index 2 sublattice of one of them.

Using AlVin, one can easy get the following.

Theorem 6.2. Unimodular Lorentzian lattices over Q[
√

13] and Q[
√

17] of signature (n, 1)
are reflective if and only if n ≤ 4 (see Table 3 for details).

The next step is to find a short list of candidate-lattices for stable reflectivity.

6.2. Short list of candidate-lattices. Our program SmaRBA [11] creates a list of numbers
tα (with respect to the ground field Q[

√
2], see Table 2) and then, using this list, displays all

Gram matrices G(u1, u2, u3, u4).
This list consists of 83 matrices, but many of them are pairwise isomorphic. After the

restriction of this list, we obtain matrices G1–G15, for each of which we find all corresponding
extensions.

To each Gram matrix Gk in our notation, there corresponds a lattice Lk that can have
some other extensions. For each new lattice (non-isomorphic to any previously found lattice)
we introduce the notation L(k), where k denotes its number:
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G1 =


1 0 0 0
0 1 0 0

0 0 1 −1−
√

2

0 0 −1−
√

2 1

 , L1 ' [−2(1 +
√

2)]⊕ [1]⊕ [1]⊕ [1];

Its unique extension is an “index
√

2” extension

L(1) := [−(1 +
√

2)]⊕ [1]⊕ [1]⊕ [1].

G2 =


1 0 0 0
0 1 0 0

0 0 1 −1−
√

2

0 0 −1−
√

2 2

 , L2 ' [−(1 + 2
√

2)]⊕ [1]⊕ [1]⊕ [1] := L(2);

G3 =


1 0 0 0
0 1 0 0

0 0 2 −1−
√

2

0 0 −1−
√

2 2

 , L3 '
[

2 −1−
√

2

−1−
√

2 2

]
⊕ [1]⊕ [1] := L(3);

G4 =


1 0 0 0
0 1 0 0

0 0 2 −1− 2
√

2

0 0 −1− 2
√

2 2

 , L4 '
[

2 −1− 2
√

2

−1− 2
√

2 2

]
⊕ [1]⊕ [1] := L(4);

G5 =


1 0 0 0
0 1 −1 −1

0 −1 2 −1−
√

2

0 −1 −1−
√

2 2

 , L5 ' [−5− 4
√

2]⊕ [1]⊕ [1]⊕ [1] := L(5);

G6 =


1 0 0 0
0 1 −1 −1

0 −1 2 −1− 2
√

2

0 −1 −1− 2
√

2 2

 , L6 ' [−11− 8
√

2]⊕ [1]⊕ [1]⊕ [1] := L(6);

G7 =


1 0 0 0
0 1 0 0

0 0 2 −2− 2
√

2

0 0 −2− 2
√

2 2

 , L7 = [G7];

Its unique extension is an “index
√

2” extension

L(7) := [−
√

2]⊕ [1]⊕ [1]⊕ [1].

G8 =


1 0 0 0
0 2 −1 −1

0 −1 2 −
√

2

0 −1 −
√

2 2

 , L8 = [G8];

Its unique extension is an “index
√

2” extension

L(8) :=

 2 −1 −
√

2

−1 2
√

2− 1

−
√

2
√

2− 1 2−
√

2

⊕ [1].
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G9 =


1 0 0 0
0 2 −1 −1

0 −1 2 −
√

2− 1

0 −1 −
√

2− 1 2

 , L9 = [G9];

Its unique extension is an “index
√

2” extension

L(9) :=

 2 −1 0
−1 2 −1

0 −1 −
√

2

⊕ [1].

G10 =


1 0 0 0
0 2 −1 −1

0 −1 2 −
√

2− 2

0 −1 −
√

2− 2 2

 , L10 = [G10];

Its unique extension is an “index
√

2” extension

L(10) :=

[
2 −1−

√
2

−1−
√

2 2

]
⊕ [2 +

√
2]⊕ [1].

G11 =


1 0 0 −1
0 2 −1 −1

0 −1 2 −
√

2− 1

−1 −1 −
√

2− 1 2

 , L11 ' [−7− 6
√

2]⊕ [1]⊕ [1]⊕ [1] := L(11);

G12 =


1 0 −1 −1
0 2 −1 −1

−1 −1 2 −2
√

2− 1

−1 −1 −2
√

2− 1 2

 , L12 = [G12];

Its unique extension is an index 2 extension

L(12) := [−7− 5
√

2]⊕ [1]⊕ [1]⊕ [1].

G13 =


2 0 0 −1
0 2 −1 −1

0 −1 2 −
√

2

−1 −1 −
√

2 2

 , L13 = [G13] := L(13);

G14 =


2 0 0 −1
0 2 −1 −1

0 −1 2 −
√

2− 1

−1 −1 −
√

2− 1 2

 , L14 = [G14] := L(14);

G15 =


2 0 −1 −1

0 2 −1 −
√

2

−1 −1 2 −
√

2− 1

−1 −
√

2 −
√

2− 1 2

 , L15 = [G15] := L(15).
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§ 7. Stable reflectivity test and proof of Theorem C

So far we have 15 candidate lattices L(1)–L(15). For each lattice L(k) we will use Vinberg’s
algorithm for constructing the fundamental Coxeter polytope for the group Or(L(k)). After
that, it remains to apply Lemma 5.1.

First of all, we study candidate lattices with an orthogonal basis. We apply software
implementation AlVin [18] of Vinberg’s algorithm. This program is written for Lorentzian
lattices associated with diagonal quadratic forms with square-free coefficients.

For lattices with non-orthogonal basis we use another approach. For every such lattice L,
we find a sublattice L′ ⊂ Q4[

√
2] isomorphic to L and given by an inner product associated

with a diagonal quadratic form. Further, our program VinAl [50] finds roots of L′.
As the result, we obtain seven stably reflective Lorentzian lattices of signature (3, 1) over

Z[
√

2], which are represented in Table 4.

Remark 6. The lattice L(8) =

[
2 −1 −

√
2

−1 2
√

2− 1

−
√

2
√

2− 1 2−
√

2

]
⊕ [1] is isomorphic to the lattice

with coordinates y = (y0, y1, y2, y3) ∈ Q4[
√

2] and with inner product given by the quadratic
form f(y) = −

√
2 y20 +y21 +y22 +y23, where y0 ∈ Z[

√
2], −y2+ y1+y2√

2
∈ Z[
√

2],
√

2y2, y3 ∈ Z[
√

2].

The roots of L(8) in Table 4 are given in these new coordinates.

The Gram matrices and Coxeter diagrams corresponding to all the lattices L(1)–L(15)
can be obtained by SmaRBA [11].

We shall prove that all remaining lattices are not stably reflective (some of them are
reflective but not stably reflective).

Proposition 7.1. The lattice L(11) = [−7 − 6
√

2] ⊕ [1] ⊕ [1] ⊕ [1] is reflective, but not
stably reflective.

Proof. For the lattice L(11) we apply Vinberg’s algorithm. The program AlVin [18]
found 10 roots:

a1 = (0, −1, 1, 0) , a2 = (0, 0, −1, 1) ,

a3 = (0, 0, 0, −1) , a4 =
(

1,
√

2 + 1,
√

2 + 1,
√

2 + 1
)
,

a5 =
(

1,
√

2 + 2,
√

2 + 1, 0
)
, a6 =

(
2
√

2 + 1, 6
√

2 + 7, 0, 0
)
,

a7 =
(√

2 + 1, 3
√

2 + 5,
√

2 + 1, 1
)
, a8 =

(√
2 + 1, 3

√
2 + 4,

√
2 + 2,

√
2 + 2

)
,

a9 =
(

4
√

2 + 6, 13
√

2 + 19, 7
√

2 + 12, 6
√

2 + 7
)
, a10 =

(
2
√

2 + 2, 6
√

2 + 9, 2
√

2 + 3, 2
√

2 + 2
)
.

The Gram matrix of this set of roots corresponds to a compact 3-dimensional Coxeter
polytope. The main diagonal of this matrix equals

{2, 2, 1, 2, 2, 2
√

2 + 10, 2, 1, 2
√

2 + 10}.

It remains to see that the group generated by “bad” reflections with respect to mirrors
Ha6 and Ha10 , is infinite, since the respective vertices of the Coxeter diagram are connected
by the dotted edged. Hence, the lattice L(11) is reflective, but not stably reflective. �

Proposition 7.2. The lattice L(3) =

[
2 −1−

√
2

−1−
√

2 2

]
⊕ [1] ⊕ [1] is reflective, but

not stably reflective.
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L(k) L Roots B(L)

L(1) [−1−
√

2]⊕ [1]⊕ [1]⊕ [1]

a1 = (0,−1, 1, 0) a2 = (0, 0,−1, 1)

a3 = (0, 0, 0,−1) a4 =
(

1, 1 +
√

2, 0, 0
)

a5 =
(
1 +
√

2, 1 +
√

2, 1 +
√

2, 1 +
√

2
) ∅

L(2) [−1− 2
√

2]⊕ [1]⊕ [1]⊕ [1]

a1 = (0,−1, 1, 0) a2 = (0, 0,−1, 1)

a3 = (0, 0, 0,−1) a4 =
(

1, 1 +
√

2, 0, 0
)

a5 =
(
1 +
√

2, 2 +
√

2, 2 +
√

2, 1
)

a6 =
(
1 +
√

2, 2 +
√

2, 1 +
√

2, 1 +
√

2
)

∅

L(5) [−5− 4
√

2]⊕ [1]⊕ [1]⊕ [1]

a1 = (0,−1, 1, 0) a2 = (0, 0,−1, 1)

a3 = (0, 0, 0,−1) a4 =
(

1, 3 +
√

2, 0, 0
)

a5 =
(
1, 1 +

√
2, 1 +

√
2, 1
) a4

L(6) [−11− 8
√

2]⊕ [1]⊕ [1]⊕ [1]

a1 = (0,−1, 1, 0) a2 = (0, 0,−1, 1)

a3 = (0, 0, 0,−1) a4 =
(

1, 2 +
√

2, 2 +
√

2, 1
)

a5 =
(
1, 2 + 2 ·

√
2, 1, 0

)
a6 =

(
1, 2 +

√
2, 1 +

√
2, 1 +

√
2
)

a7 =
(
2 +
√

2, 7 + 5
√

2, 3 + 3
√

2, 2 +
√

2
)

a8 =
(
1 + 2

√
2, 8 + 5

√
2, 4 + 3

√
2, 3 + 2

√
2
)

a9 =
(
1 + 2

√
2, 8 + 6

√
2, 3 + 2

√
2, 2 + 2

√
2
)

a10 =
(
2 + 3

√
2, 13 + 9

√
2, 7 + 5

√
2, 2 +

√
2
)

a11 =
(
4 + 2

√
2, 13 + 10

√
2, 9 + 6

√
2, 0
)

a12 =
(
4 + 4

√
2, 19 + 14

√
2, 9 + 6

√
2, 8 + 6

√
2
)

a13 =
(
4 + 4

√
2, 20 + 14

√
2, 11 + 8

√
2, 1
)

a14 =
(
4 + 2

√
2, 14 + 10

√
2, 6 + 4

√
2, 5 + 4

√
2
)

a15 =
(
4 + 3

√
2, 17 + 12

√
2, 8 + 5

√
2, 6 + 4

√
2
)

a16 =
(
4 + 3

√
2, 17 + 12

√
2, 9 + 7

√
2, 1 +

√
2
)

a17 =
(
5 + 4

√
2, 22 + 15

√
2, 13 + 9

√
2, 1 +

√
2
)

∅

L(7) [−
√

2]⊕ [1]⊕ [1]⊕ [1]

a1 = (0,−1, 1, 0) a2 = (0, 0,−1, 1)

a3 = (0, 0, 0,−1) a4 =
(

1 +
√

2, 1 +
√

2, 1 +
√

2, 0
)

a5 =
(
1 +
√

2, 2 +
√

2, 0, 0
)

a6 =
(
2 +
√

2, 1 +
√

2, 1 +
√

2, 1 +
√

2
)

∅

L(8)

 2 −1 −
√

2

−1 2
√

2− 1

−
√

2
√

2− 1 2−
√

2

⊕ [1]

a1 =
(
0, 0, 0, −

√
2
)

a2 =
(
0, 0, −

√
2, 0

)
a3 =

(
0,−

√
2
2 , 1 +

√
2
2 , 0

)
a4 =

(
1 +
√

2, 2 +
√

2, 0, 0
)

a5 =
(
1 +
√

2, 0, 0,
√

2 + 2,
)

a6 =
(
2 +
√

2, 2 +
√

2, 0, 2 +
√

2
)

a6

L(12) [−7− 5
√

2]⊕ [1]⊕ [1]⊕ [1]

a1 = (0,−1, 1, 0) a2 = (0, 0,−1, 1)

a3 = (0, 0, 0,−1) a4 =
(

2−
√

2, 1 +
√

2, 1, 0
)

a5 =
(
1, 1 +

√
2, 1 +

√
2, 1 +

√
2
) ∅

Table 4. Stably reflective Lorentzian lattices of signature (3, 1) over Z[
√

2].
Here B(L) denotes the set of “bad” reflections.
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Proof. Notice that L(3) is isomorphic to the lattice with coordinates

y = (y0, y1, y2, y3) ∈ Q4[
√

2]

and with inner product, given by the quadratic form

f(y) = −(2
√

2− 1)y20 + y21 + y22 + y23,

where √
2y0 ∈ Z[

√
2], y0 +

y0 + y1√
2
∈ Z[
√

2], y2, y3 ∈ Z[
√

2].

Our program VinAl finds 8 roots:

a1 = (0, 0, 0, −1) , a2 = (0, 0, −1, 1) ,

a3 =
(

0, −
√

2, 0, 0
)
, a4 =

(
1 +
√

2, 3 +
√

2, 0, 0
)
,

a5 =
(

1 +
√

2/2,
√

2/2,
√

2 + 1, 0
)
, a6 =

(√
2 + 1,

√
2 + 1,

√
2 + 1, 1

)
,

a7 =
(√

2 + 1, 1,
√

2 + 1,
√

2 + 1
)
, a8 =

(
3
√

2 + 4, 0, 4
√

2 + 5,
√

2 + 3
)
.

It is sufficient to consider the group generated by “bad” reflections with respect to mirrors
Ha4 and Ha8 . Since these mirrors are divergent, this subgroup is infinite. �

Proposition 7.3. The lattice L(4) =

[
2 −1− 2

√
2

−1− 2
√

2 2

]
⊕ [1]⊕ [1] is reflective, but not

stably reflective.

Proof. Notice that L(4) is isomorphic to the lattice with coordinates

y = (y0, y1, y2, y3) ∈ Q4[
√

2]

and with inner product, given by the quadratic form

f(y) = −(5 + 4
√

2)y20 + y21 + y22 + y23,

where √
2y0 ∈ Z[

√
2],

y0 + y1√
2
∈ Z[
√

2], y2, y3 ∈ Z[
√

2].

Our program VinAl finds 8 roots

a1 = (0, 0, 0, −1) , a2 = (0, 0, −1, 1) ,

a3 =
(

0, −
√

2, 0, 0
)
, a4 =

(
1, 3 +

√
2, 0, 0

)
,

a5 =
(√

2/2,
√

2/2,
√

2 + 1, 0
)
, a6 =

(
1, 1,

√
2 + 1,

√
2 + 1

)
,

a7 =
(

1,
√

2 + 1,
√

2 + 1, 1
)
, a8 =

(√
2 + 2, 0, 4

√
2 + 5,

√
2 + 3

)
.

It is sufficient to consider the group generated by “bad” reflections with respect to mirrors
Ha4 and Ha8 . Since these mirrors are divergent, this subgroup is infinite. �

Proposition 7.4. The lattice L(9) =

[
2 −1 0
−1 2 −1

0 −1 −
√

2

]
⊕ [1] is not stably reflective.
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Proof. Note that L(9) is isomorphic to the lattice with coordinates y = (y0, y1, y2, y3) ∈
Q4[
√

2] and with inner product, given by the quadratic form (y) = −
√

2 y20 + (3 +
√

2)y21 +
y22 + y23, where

√
2 y1 ∈ Z[

√
2], y1+y2√

2
∈ Z[
√

2], y1 − y0, y3 ∈ Z[
√

2].

Our program VinAl finds 9 first roots

a1 = (0, 0, 0, −1) , a2 =
(

0, 0, −
√

2, 0
)
,

a3 =
(

0, −
√

2, 0, 0
)
, a4 =

(
1 +
√

2, 0, 0, 2 +
√

2
)
,

a5 =
(

1 +
√

2, 0, 2 +
√

2, 0
)
, a6 =

(
2 +
√

2, 0, 2 +
√

2, 2 +
√

2
)
,

a7 =
(

1 +
√

2, 1, 1 +
√

2, 0
)
, a8 =

(
2 + 3

√
2/2, 1 +

√
2/2, 1 +

√
2/2, 2 +

√
2
)
,

a9 =
(

5 + 4
√

2, 2 +
√

2, 0, 5 + 4
√

2
)
.

It is sufficient to consider the subgroup generated by “bad” reflections with respect to
mirrors Ha3 , Ha6 and Ha9 . Since the mirrors Ha6 and Ha9 are divergent, this subgroup is
infinite. �

Proposition 7.5. The lattice L(10) =

[
2 −1−

√
2

−1−
√

2 2

]
⊕ [2 +

√
2] ⊕ [1] is not stably

reflective.

Proof. Note that L(10) is isomorphic to the lattice with coordinates y = (y0, y1, y2, y3) ∈
Q4[
√

2] and with inner product, given by the quadratic form

f(y) = −(1 + 2
√

2) y20 + (2 +
√

2)y21 + y22 + y23,

where
√

2 y0 ∈ Z[
√

2], y0+y2√
2
∈ Z[
√

2], y1, y3 ∈ Z[
√

2].

Our program VinAl finds 8 first roots

a1 = (0, 0, 0, −1) , a2 =
(

0, 0, −
√

2, 0
)
,

a3 =
(

0, −
√

2, 0, 0
)
, a4 =

(√
2/2, 0, 2 +

√
2/2, 0

)
,

a5 =
(

1 +
√

2/2, 0, 1 +
√

2/2,
√

2 + 2
)
, a6 =

(
1 +
√

2, 1 +
√

2,
√

2 + 1, 0
)
,

a7 =
(

2 +
√

2, 2 +
√

2, 0, 2 +
√

2
)
, a8 =

(
2 +
√

2, 1 + 2
√

2, 0, 0
)
.

It is sufficient to consider the group generated by “bad” reflections with respect to mirrors
Ha3 and Ha8 . Since these mirrors are divergent, this subgroup is infinite. �

Proposition 7.6. The lattices L(13), L(14) and L(15) are not reflective.

Proof. Non-reflectivity of these lattices is determined by the method of infinite symmetry,
described in §5.3.2. The implementation of this method is avalaible here https://github.

com/nvbogachev/VinAlg-Z-sqrt-2-/blob/master/Infinite-Symm.py �

Thus, the lattices L(1), L(2), L(5), L(6), L(7), L(8), and L(12), are stably reflective. This
completes the proof of Theorem C. �

https://github.com/nvbogachev/VinAlg-Z-sqrt-2-/blob/master/Infinite-Symm.py
https://github.com/nvbogachev/VinAlg-Z-sqrt-2-/blob/master/Infinite-Symm.py
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The next step in this direction can be finding all stably reflective Lorentzian Z[
√

2]-lattices
of signature (3, 1) or over other rings of integers.

References

[1] Ian Agol, Finiteness of arithmetic Kleinian reflection groups. In Proceedings of the International Congress
of Mathematicians: Madrid, August 22–30, 2006: invited lectures, pages 951–960, 2006.

[2] Ian Agol, Mikhail Belolipetsky, Peter Storm, and Kevin Whyte. Finiteness of arithmetic hyperbolic
reflection groups. — Groups Geom. Dyn., 2008, Vol. 2(4), p. 481–498.

[3] D. Allcock. The reflective Lorentzian lattices of rank 3. — Mem. Amer. Math. Soc. 220, no 1033.,
American Mathematical Society, 2012, p. 1 — 125.

[4] Mikhail Belolipetsky. Arithmetic hyperbolic reflection groups. — Bulletin (New Series) of the Amer.
Math. Soc., 2016, Vol. 53 (3), p. 437–475.

[5] N. V. Bogachev. Reflective anisotropic hyperbolic lattices of rank 4. ArXiv: https://arxiv.org/abs/

1610.06148v1

[6] N. V. Bogachev, Reflective Anisotropic Hyperbolic Lattices of Rank 4 — Russian Mathematical Surveys
72:1, pp. 179–181 (2017).

[7] N. V. Bogachev and A. Ju. Perepechko, Vinberg’s Algorithm for Hyperbolic Lattices — Mathematical
Notes, 2018, Vol. 103:5, 836–840

[8] N. V. Bogachev, Classification of (1,2)-Reflective Anisotropic Hyperbolic Lattices of Rank 4 — Izvestiya
Mathematics 83:1, pp. 1–19 (2019).

[9] N. V. Bogachev and A. Kolpakov. On faces of quasi-arithmetic Coxeter polytopes. Available at https:

//arxiv.org/abs/2002.11445v2.
[10] N. V. Bogachev and A. Kolpakov. PLoF: Polytope’s Lower-dimensional Faces. SageMath worksheet

(2020). Available at https://sashakolpakov.wordpress.com/list-of-papers/
[11] N. Bogachev. SmaRBA: Small Ridges, Bounds and Applications. SageMath worksheet (2020). Available

at https://github.com/nvbogachev/OuterMostEdge/blob/master/SmaRBA.ipynb
[12] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math. (2),

75:485–535, 1962.
[13] V. O. Bugaenko. Groups of automorphisms of unimodular hyperbolic quadratic forms over the ring

Z[(
√

5 + 1)/2]. Moscow Univ. Math. Bull. 39 (1984), pp. 6 — 14.
[14] V. O. Bugaenko. On reflective unimodular hyperbolic quadratic forms. Selecta Math. Soviet.,

9(3):263–271, 1990. Selected translations.
[15] V. O. Bugaenko. Arithmetic crystallographic groups generated by reflections, and reflective hyperbolic

lattices. — Advances in Soviet Mathematics, 1992, Volume 8, p. 33 — 55.
[16] H. S. M. Coxeter. Discrete groups generated by reflections, — Ann. of Math. (2), 35:3 (1934), 588–621.
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